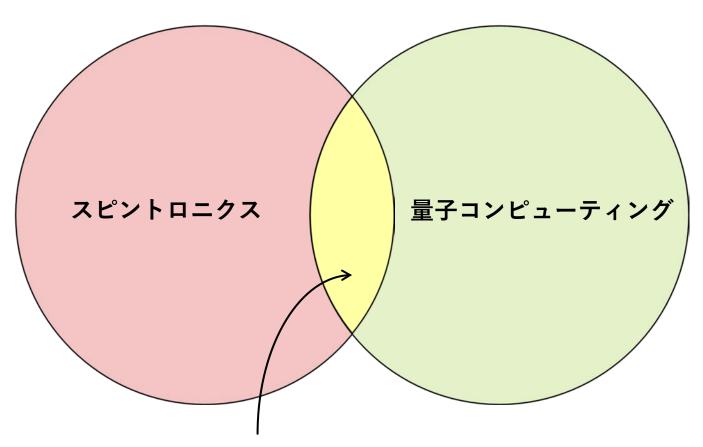
スピンを用いた 量子コンピューティング

阿部英介

慶應義塾大学スピントロニクス研究センター

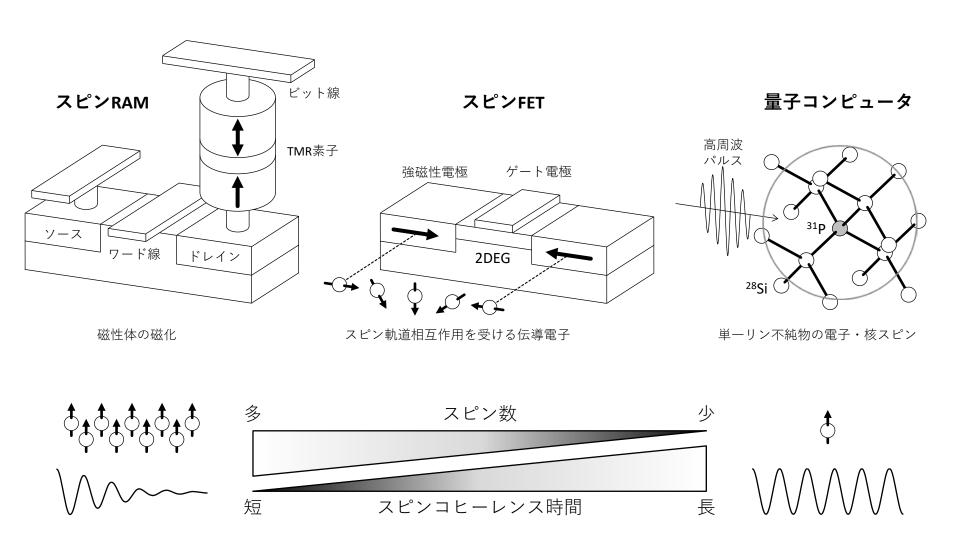
2017年11月27日@筑波大学東京キャンパス 第**16**回スピントロニクス入門セミナー

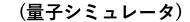
スピントロニクスと量子コンピューティング

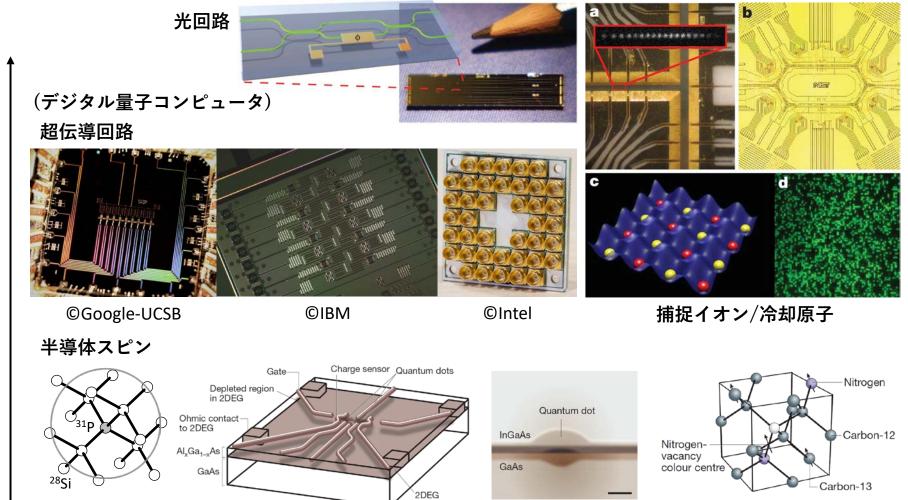


スピンを用いた量子コンピューティング

スピントロニクスにおける位置づけ





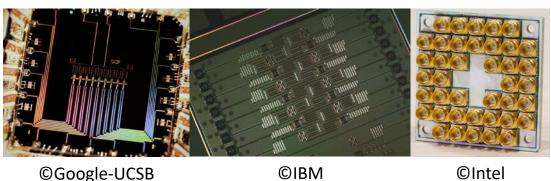


Nature 464, 45 (2010) Ladd et al.

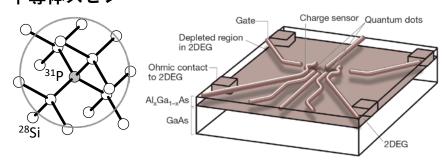
応用物理 86 (6), 453 (2017) 阿部 & 伊藤

"固体量子情報デバイスの現状と将来展望 一万能ディジタル量子コンピュータの実現に向けて"

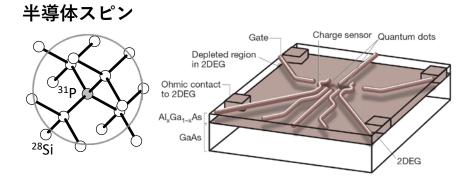
超伝導回路



半導体スピン



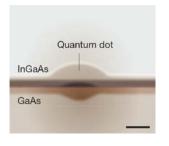
本日カバーする範囲 (材料はシリコンに限定)



固体物理 48 (11), 541 (2013) 山本 & 阿部

"光制御量子ドットスピンを用いた量子情報システム の現状と将来展望"

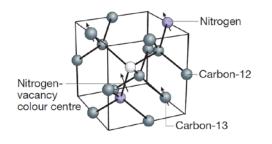
半導体スピン



NEW DIAMOND 33 (2), 3 (2017) 阿部 & 伊藤

"スピントロニクス研究の原点からダイヤモンドでのトレンド, 今後の展開まで"

半導体スピン



講演内容

- 量子コンピューティング
 - 量子ビット
 - 量子ゲート(ユニタリ演算)
 - 量子アルゴリズム
- シリコンスピン量子コンピュータ
 - リンドナー
 - MOS量子ドット
 - Si/SiGe量子ドット

講演内容

- 量子コンピューティング
 - 量子ビット
 - 量子ゲート(ユニタリ演算)
 - 量子アルゴリズム
- シリコンスピン量子コンピュータ
 - リンドナー
 - MOS量子ドット
 - Si/SiGe量子ドット

量子ビット

量子ビット

定義: 計算基底のベクトル表示

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \qquad \langle 0|0\rangle = (1 \quad 0) \begin{pmatrix} 1\\0 \end{pmatrix} = 1$$

$$\langle 1|0\rangle = (0 \quad 1) \begin{pmatrix} 1\\0 \end{pmatrix} = 0$$

公準(postulate): 許される状態はヒルベルト空間内

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = {\alpha \choose \beta}$$
$$|\alpha|^2 + |\beta|^2 = 1 \qquad \alpha, \beta \in \mathbf{C}$$

複数量子ビット

2量子ビットの状態の記述

$$|\Psi\rangle = \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

$$|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$$

公準: 複合系の状態はテンソル積で表される

(注) 2量子ビットの状態の計算基底は4つ $|00\rangle = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, |01\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, |10\rangle = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, |11\rangle = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$

定義: テンソル積(行列表示)

$$a \otimes b = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \otimes \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \times \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \\ a_2 \times \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} a_1 b_1 \\ a_1 b_2 \\ a_2 b_1 \\ a_2 b_2 \end{pmatrix}$$

2量子ビット

2量子ビットの計算基底

$$|00\rangle = |0\rangle|0\rangle = |0\rangle \otimes |0\rangle = \begin{pmatrix} 1 \times \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ 0 \times \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$|01\rangle = |0\rangle|1\rangle = |0\rangle \otimes |1\rangle = \begin{pmatrix} 1 \times \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\ 0 \times \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$|10\rangle = |1\rangle|0\rangle = |1\rangle \otimes |0\rangle = \begin{pmatrix} 0 \times \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ 1 \times \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

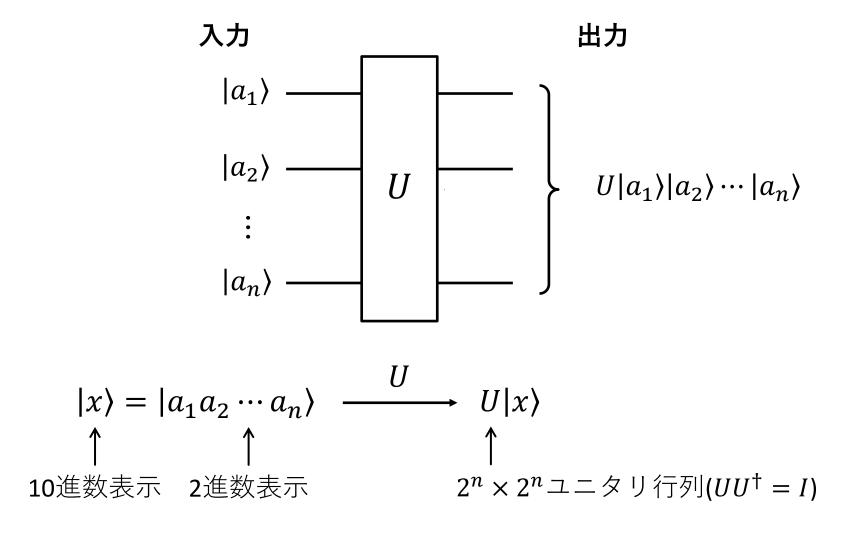
$$|11\rangle = |1\rangle|1\rangle = |1\rangle \otimes |1\rangle = \begin{pmatrix} 0 \times {0 \choose 1} \\ 1 \times {0 \choose 1} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

2量子ビット状態

$$|\Psi\rangle = \begin{pmatrix} \alpha \\ \beta \\ \delta \\ \gamma \end{pmatrix}$$

ユニタリ演算

公準: 量子状態の時間発展はユニタリ



ユニタリ演算: アダマールゲート

$$|a\rangle - \frac{1}{\sqrt{2}} \sum_{b=0,1} (-1)^{a \cdot b} |b\rangle = \frac{|0\rangle + (-1)^a |1\rangle}{\sqrt{2}}$$

$$\begin{cases} H|0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \\ H|1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{cases} \iff \begin{cases} H\begin{pmatrix}1\\0\end{pmatrix} = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix} \\ H\begin{pmatrix}0\\1\end{pmatrix} = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix} \end{cases} \iff H = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\1&-1\end{pmatrix}$$

$$HH = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 〈 \to \text{\tilit{\text{\tilit{\text{\til\til\text{\text

ユニタリ演算:アダマールゲート

$$|a\rangle$$
 — H $\frac{1}{\sqrt{2}}\sum_{b=0,1}(-1)^{a\cdot b}|b\rangle = \frac{|0\rangle + (-1)^a|1\rangle}{\sqrt{2}}$

$$HH|a\rangle = H\left(\frac{1}{\sqrt{2}} \sum_{b=0,1} (-1)^{a \cdot b} |b\rangle\right)$$

$$= \frac{1}{\sqrt{2}} \sum_{b=0,1} (-1)^{a \cdot b} \left(\frac{1}{\sqrt{2}} \sum_{c=0,1} (-1)^{b \cdot c} |c\rangle\right) = \frac{1}{2} \sum_{b,c} (-1)^{(a+c) \cdot b} |c\rangle$$
1. \(\text{1}\)

$$=\frac{1}{2}\sum_{b}(|a\rangle+(-1)^{b}|\overline{a}\rangle)=\frac{1}{2}(|a\rangle+|\overline{a}\rangle+|a\rangle-|\overline{a}\rangle)=|a\rangle$$

干渉による強め合いと弱め合い

ユニタリ演算: アダマールゲート

$$|000\rangle \xrightarrow{3} H^{\otimes 3} |000\rangle$$

$$H = \frac{1}{\sqrt{2^3}} (|0\rangle + |1\rangle)(|0\rangle + |1\rangle)$$

$$H^{\otimes 3} |000\rangle$$

$$H = \frac{1}{\sqrt{2^3}} (|0\rangle + |1\rangle)(|0\rangle + |1\rangle)$$

$$= \frac{1}{\sqrt{2^3}} (|000\rangle + |001\rangle + |010\rangle + |011\rangle + |100\rangle + |101\rangle + |110\rangle + |111\rangle)$$

$$= \frac{1}{\sqrt{2^3}} \sum_{a,b,c=0,1} |abc\rangle = \frac{1}{\sqrt{2^3}} \sum_{x=0}^{2^3-1} |x\rangle$$

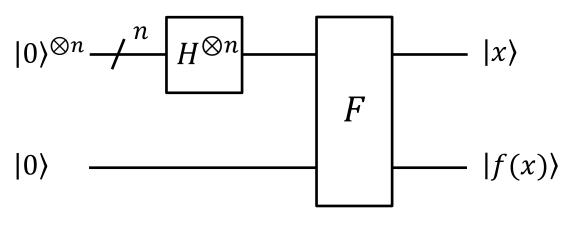
ユニタリ演算: アダマールゲート

$$|x\rangle = |a_1\rangle|a_2\rangle\cdots|a_n\rangle$$
 \xrightarrow{n} $H^{\otimes n}$ $\frac{1}{\sqrt{2^n}}\sum_{y}(-1)^{x\cdot y}|y\rangle$

 $x \cdot y \equiv a_1 \cdot b_1 + a_2 \cdot b_2 + \dots + a_n \cdot b_n$

$$\begin{split} H^{\otimes n}|x\rangle &= \frac{1}{\sqrt{2^n}} \Biggl(\sum_{b_1 = 0,1} (-1)^{a_1 \cdot b_1} |b_1\rangle \Biggr) \cdots \Biggl(\sum_{b_n = 0,1} (-1)^{a_n \cdot b_n} |b_n\rangle \Biggr) \\ &= \frac{1}{\sqrt{2^n}} \sum_{b_1, b_2 \cdots b_n} (-1)^{a_1 \cdot b_1 + a_2 \cdot b_2 + \cdots + a_n \cdot b_n} |b_1 b_2 \cdots b_n\rangle \\ &= \frac{1}{\sqrt{2^n}} \sum_{y} (-1)^{x \cdot y} |y\rangle \end{split}$$

量子並列性



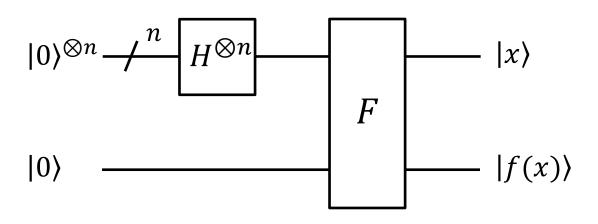
$$f(x)$$
: 2値関数(ビットデータ列)

$$F|x\rangle|a\rangle = |x\rangle|a \oplus f(x)\rangle$$

$$FF|x\rangle|a\rangle = |x\rangle|a \oplus f(x) \oplus f(x)\rangle = |x\rangle|a\rangle$$

$$|0\rangle^{\otimes n}|0\rangle \xrightarrow{(H^{\otimes n})\otimes I} \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^{n}-1} |x\rangle|0\rangle \xrightarrow{F} \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^{n}-1} |x\rangle|f(x)\rangle$$

量子並列性

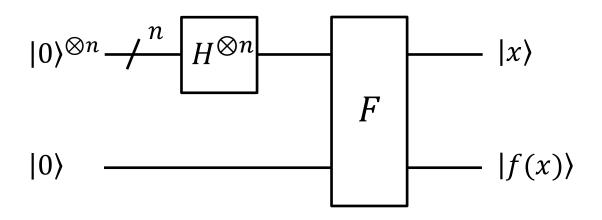


$$\frac{1}{\sqrt{2^2}} \sum_{x=0}^{2^2-1} |x\rangle |f(x)\rangle = \frac{1}{2} (|0\rangle |f(0)\rangle + |1\rangle |f(1)\rangle + |2\rangle |f(2)\rangle + |3\rangle |f(3)\rangle)$$

f(x)の情報を全て含んだ状態(量子もつれ、エンタングルメント)

計算・情報処理の高速化に繋がる?

量子並列性と測定



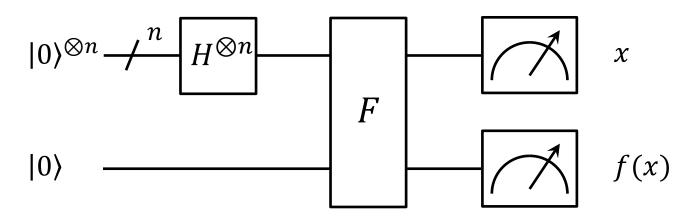
$$\frac{1}{\sqrt{2^2}} \sum_{x=0}^{2^2-1} |x\rangle |f(x)\rangle = \frac{1}{2} (|0\rangle |f(0)\rangle + |1\rangle |f(1)\rangle + |2\rangle |f(2)\rangle + |3\rangle |f(3)\rangle)$$

公準:射影測定

$$\alpha|0\rangle + \beta|1\rangle$$

 $\alpha|0\rangle + \beta|1\rangle$
 $\alpha|0\rangle + \beta|1$

量子並列性と測定



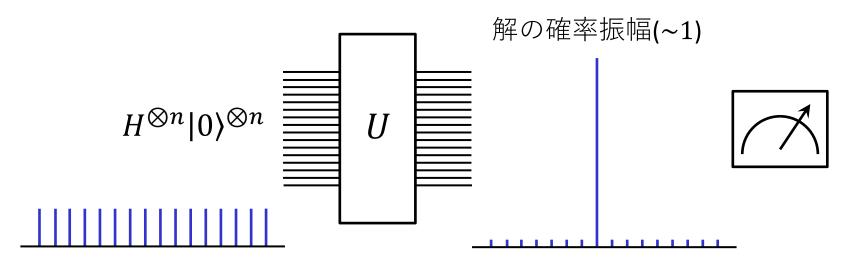
$$\frac{1}{\sqrt{2^2}} \sum_{x=0}^{2^2-1} |x\rangle |f(x)\rangle = \frac{1}{2} (|0\rangle |f(0)\rangle + |1\rangle |f(1)\rangle + |2\rangle |f(2)\rangle + |3\rangle |f(3)\rangle)$$

確率1/4でどれか1つの組の結果を知る

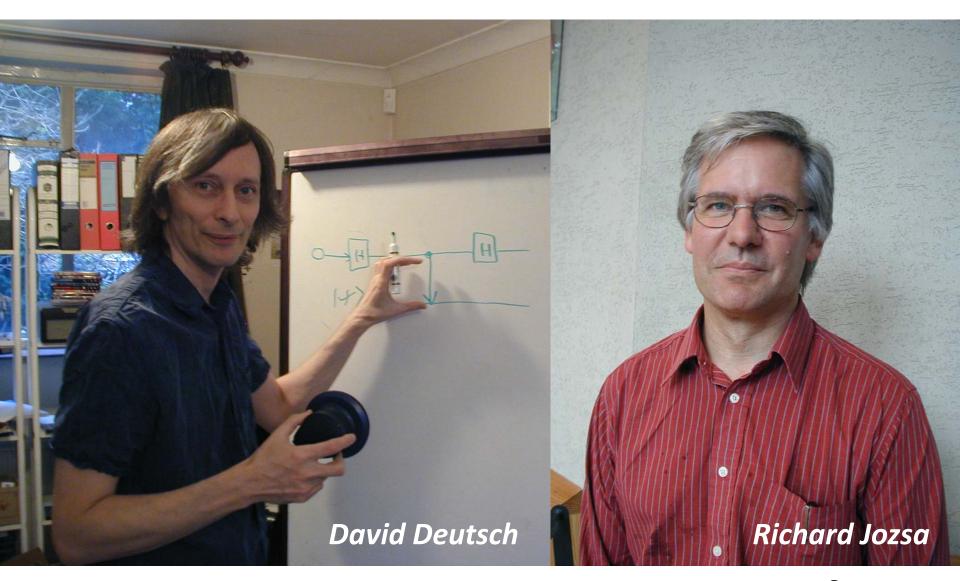
量子並列性にナイーブに期待される計算・情報処理の高速化は、 測定による状態の収縮によりキャンセルされそう

量子アルゴリズム

- 重ね合わせ状態(**量子並列性**)から始めて、解の状態の確率振幅が大きくなるよう(**量子干渉**)にユニタリ変換し、最後に**測定**
- **ドイチェ・ジョザ**、グローバー(データ検索)、ショア(素因数分解)...



各状態の確率振幅(2-n/2)



ドイチェの問題

定義: 2値関数f(x)について、全ての入力xに対して同じ出力(全て0か全て1)を返すものを"constant(一定)"、半分が0,半分が1となるものを"balanced(均等)"と呼ぶ

例:

consta	ınt
--------	-----

х	f(x)
0	0
1	0
2	0
3	0

balanced

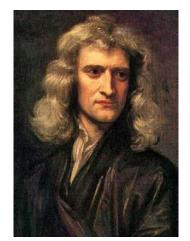
χ	f(x)
0	0
1	1
2	1
3	0

どちらでもない

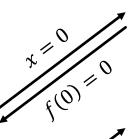
x	f(x)	
0	0	
1	1	
2	1	
3	1	

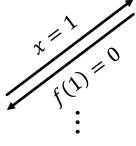
ドイチェの問題

ドイチェはconstantかbalancedのf(x)を持っている。ニュートンと シュレディンガーは、f(x)がconstantかbalancedかを判定するために 何回の問い合わせが必要か?



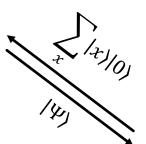
I. Newton (By Godfrey Kneller)





(最大 $2^{\frac{n}{2}}$ + 1回)

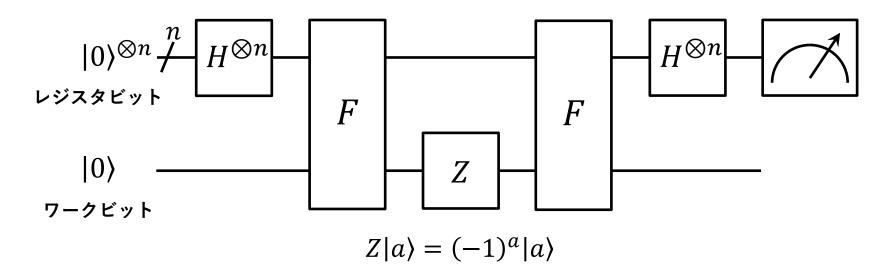
x	f(x)	
0	0	
1	0	
2	0	
3	0	



(常に1回)

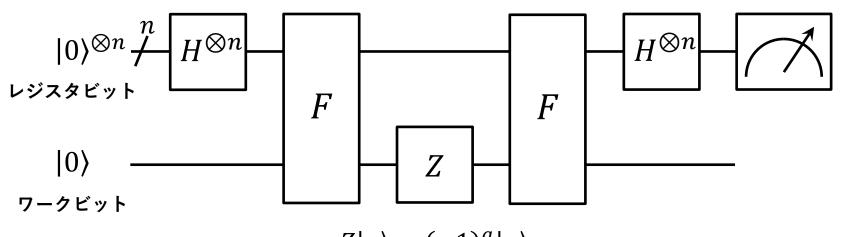
"量子"問い合わせ

E. Schrödinger (©Nobel Foundation)



$$|0\rangle^{\otimes n}|0\rangle \xrightarrow{(H^{\otimes n})\otimes I} \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^{n}-1} |x\rangle|0\rangle \xrightarrow{F} \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^{n}-1} |x\rangle|f(x)\rangle$$

$$\frac{(I^{\otimes n}) \otimes Z}{\sqrt{2^n}} \sum_{x=0}^{2^{n-1}} (-1)^{f(x)} |x\rangle |f(x)\rangle \qquad f(x)$$
の情報を**位相** に書き込む



$$Z|a\rangle = (-1)^a|a\rangle$$

$$\frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^{n}-1} (-1)^{f(x)} |x\rangle |f(x)\rangle \xrightarrow{F} \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^{n}-1} (-1)^{f(x)} |x\rangle |0\rangle$$

$$\underbrace{(H^{\otimes n}) \otimes I}_{v} \sum_{v} \left(\sum_{x} \frac{(-1)^{f(x)+x \cdot y}}{2^{n}} \right) |y\rangle |0\rangle \qquad H^{\otimes n} |x\rangle = \frac{1}{\sqrt{2^{n}}} \sum_{y} (-1)^{x \cdot y} |y\rangle$$

$$H^{\otimes n}|x\rangle = \frac{1}{\sqrt{2^n}} \sum_{y} (-1)^{x \cdot y} |y\rangle$$

f(x)の情報をワーク

レジスタビットが $|0\rangle^{\otimes n}$ に戻る確率振幅

$$\sum_{x=0}^{2^{n}-1} \frac{(-1)^{f(x)+x\cdot 0}}{2^{n}} = \begin{cases} \pm 1 & \text{(constant)} \\ 0 & \text{(balanced)} \end{cases}$$

n = 2, constant

干渉による強め合い

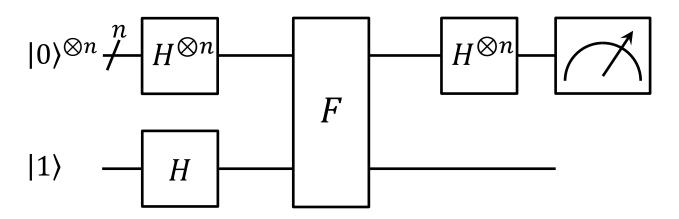
$$\sum_{x=0}^{3} \frac{(-1)^{f(x)}}{2^n} = \frac{(-1)^0 + (-1)^0 + (-1)^0 + (-1)^0}{4} = 1$$

n = 2, balanced

干渉による弱め合い

$$\sum_{x=0}^{3} \frac{(-1)^{f(x)}}{2^n} = \frac{(-1)^0 + (-1)^1 + (-1)^1 + (-1)^0}{4} = 0$$

改良版



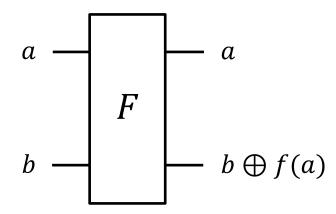
$$|0 \oplus f(x)\rangle - |1 \oplus f(x)\rangle = (-1)^{f(x)}(|0\rangle - |1\rangle)$$

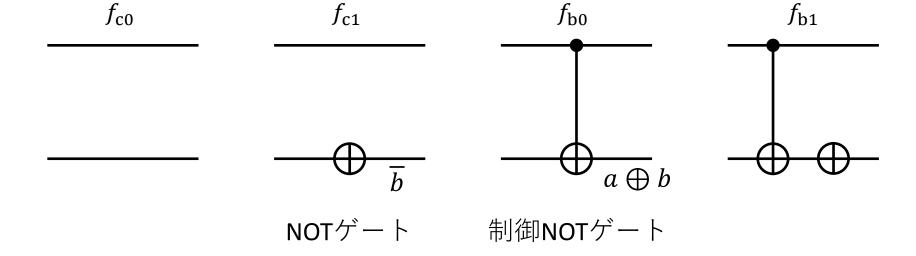
$$\frac{1}{\sqrt{2^n}} \sum_{x} |x\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \qquad \xrightarrow{F} \qquad \frac{1}{\sqrt{2^n}} \sum_{x} (-1)^{f(x)} |x\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)$$

$$\underbrace{(H^{\otimes n}) \otimes I}_{x,y} \sum_{x,y} \frac{(-1)^{f(x)+x\cdot y}}{2^n} |y\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)$$

1ビットのFゲート

	constant		balanced	
а	f_{c0}	f_{c1}	$f_{ m b0}$	$f_{ m b1}$
0	0	1	0	1
1	0	1	1	0





量子コンピューティングの難しさ

- 量子情報を**位相**に書き込み、**量子干渉**により解の 状態を抜き出す
 - → 計算中に**位相コヒーレンス**を保つことが必要

- 量子状態は**複製できない**(任意の状態 $|\phi\rangle$ に対して $U|\phi\rangle|0\rangle = |\phi\rangle|\phi\rangle$ となるユニタリ演算子Uは存在しない)
 - →量子誤り訂正符号 & 誤り耐性量子計算

(フォールトトレラント, fault tolerant)

講演内容

- 量子コンピューティング
 - 量子ビット
 - 量子ゲート(ユニタリ演算)
 - 量子アルゴリズム
- シリコンスピン量子コンピュータ
 - リンドナー
 - MOS量子ドット
 - Si/SiGe量子ドット

ディビンチェンゾの要請

1. スケーラブルな量子ビット列

2. 初期化

3. 長いコヒーレンス時間

4. ユニバーサル量子ゲート

D. DiVincenzo (©RWTH Aachen U.)

ディビンチェンゾの要請

- 1. スケーラブルな量子ビット列→スピン系における最大の課題
- **2. 初期化**→ スピン緩和(*T*₁)、スピン依存トンネル etc
- 3. 長いコヒーレンス時間 $\rightarrow T_{2e}$ ~1 sec、 T_{2n} ~30 min
- 4. ユニバーサル量子ゲート→ 1量子ビット制御 + CNOT

D. DiVincenzo (©RWTH Aachen U.)

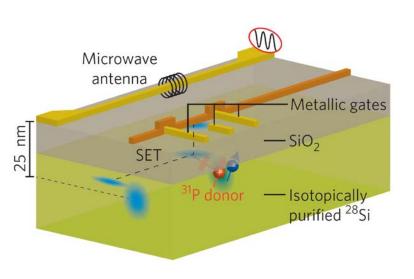
フェデリティ > 99%

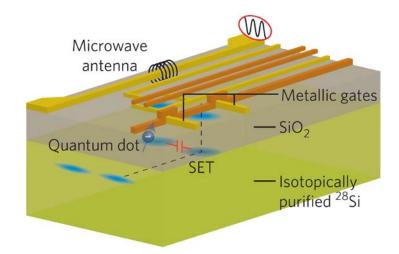
ディビンチェンゾの要請

- スケーラブルな量子ビット列
 →スピン系における最大の課題
- ②. 初期化→ スピン緩和(T₁)、スピン依存トンネル etc
 - 長いコヒーレンス時間
 →表面符号による誤り耐性(T₂→∞)
- **4.** ユニバーサル量子ゲート
 → 1量子ビット制御 + CNOT
- 5. 射影測定→ スピン・電荷変換

D. DiVincenzo (©RWTH Aachen U.)

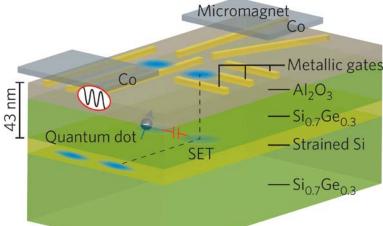
シリコンスピン





リンドナー

MOS量子ドット

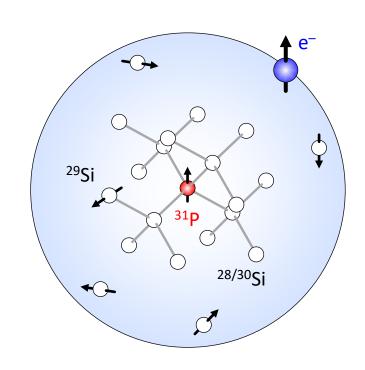


Si/SiGe量子ドット

Nature Nano. 9, 966 (2014) Schreiber & Bluhm

シリコン中のリンドナー

III (13)	IV (14)	V (15)
В	С	N
Al	Si	P
Ga	Ge	As

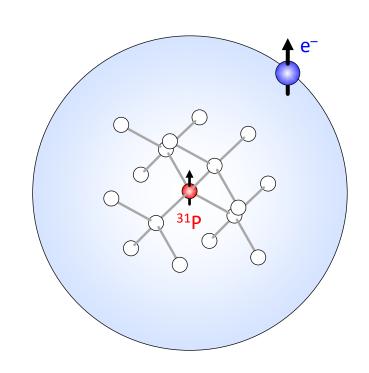


²⁸Si: ²⁹Si ($I = \frac{1}{2}$): ³⁰Si = 92.2%: 4.7%: 3.1%

 $^{31}P (I = \frac{1}{2}) = 100\%$

シリコン中のリンドナー

III (13)	IV (14)	V (15)
В	С	N
Al	Si	P
Ga	Ge	As



同位体制御²⁸Si → 99.995%

 $^{31}P (I = \frac{1}{2}) = 100\%$

シリコン中のリンドナー

スピンハミルトニアン

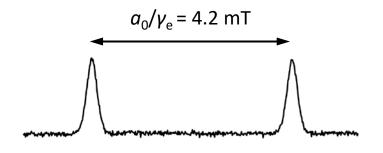
$$H_0 = \gamma_e B_0 S_z - \gamma_P B_0 I_z + a_0 S_z I_z$$

 $B_0 \sim 350 \text{ mT (X-band)}$

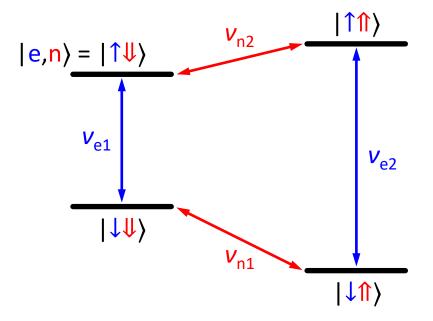
 $\gamma_{\rm e} = 27.97 \, {\rm GHz/T}$

 $\gamma_{\rm P} = 17.23 \, {\rm MHz/T}$

 $a_0 = 117.53 \text{ MHz}$



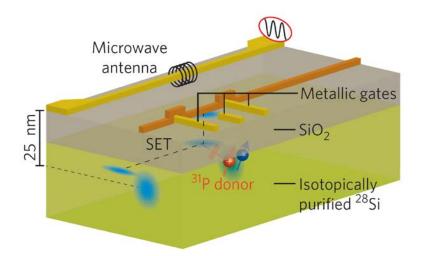
アンサンブル電子スピン共鳴(磁場掃引)

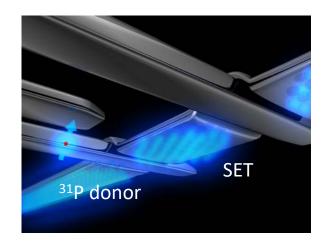


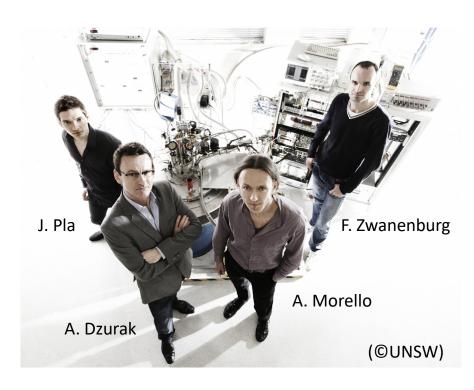
$$v_{e1} = v_e B_0 - a_0/2$$
 $v_{e2} = v_e B_0 + a_0/2$
 $v_{n1} = a_0/2 + v_p B_0$ $v_{n2} = a_0/2 - v_p B_0$

Single-shot readout of an electron spin in silicon

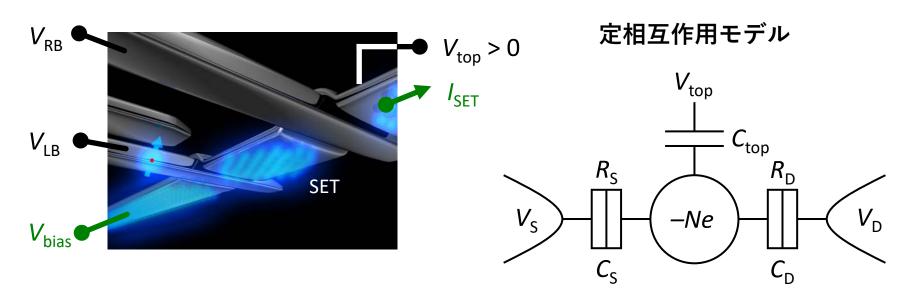
Andrea Morello¹, Jarryd J. Pla¹, Floris A. Zwanenburg¹, Kok W. Chan¹, Kuan Y. Tan¹, Hans Huebl¹†, Mikko Möttönen^{1,3,4}, Christopher D. Nugroho¹†, Changyi Yang², Jessica A. van Donkelaar², Andrew D. C. Alves², David N. Jamieson², Christopher C. Escott¹, Lloyd C. L. Hollenberg², Robert G. Clark¹† & Andrew S. Dzurak¹







単電子トランジスタ



電気化学ポテンシャル

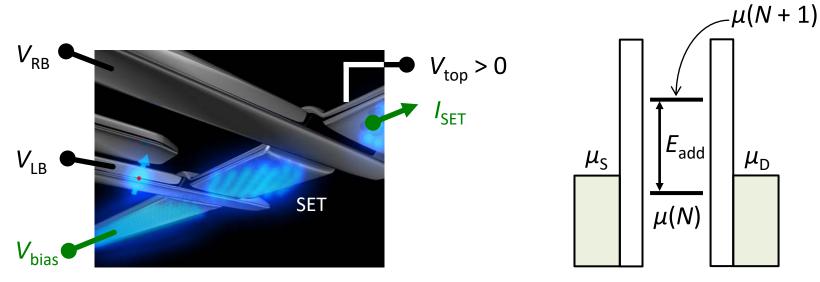
Rev. Mod. Phys. 79, 1217 (2007) Hanson et al.

$$\mu(N) = E_{\rm C} \left(N - N_0 - \frac{1}{2} \right) - \frac{E_{\rm C}}{e} \left(C_{\rm S} V_{\rm S} + C_{\rm top} V_{\rm top} + C_{\rm D} V_{\rm D} \right) + E_N$$

付加エネルギー

$$E_{\mathrm{add}}(N) = \mu(N+1) - \mu(N) = E_{\mathrm{C}} + \Delta E$$
 $E_{\mathrm{C}} = \frac{e^2}{C_{\Sigma}}$: 帯電エネルギー

単電子トランジスタ



SET準位、ソース、ドレインの μ の相対位置で伝導を理解する

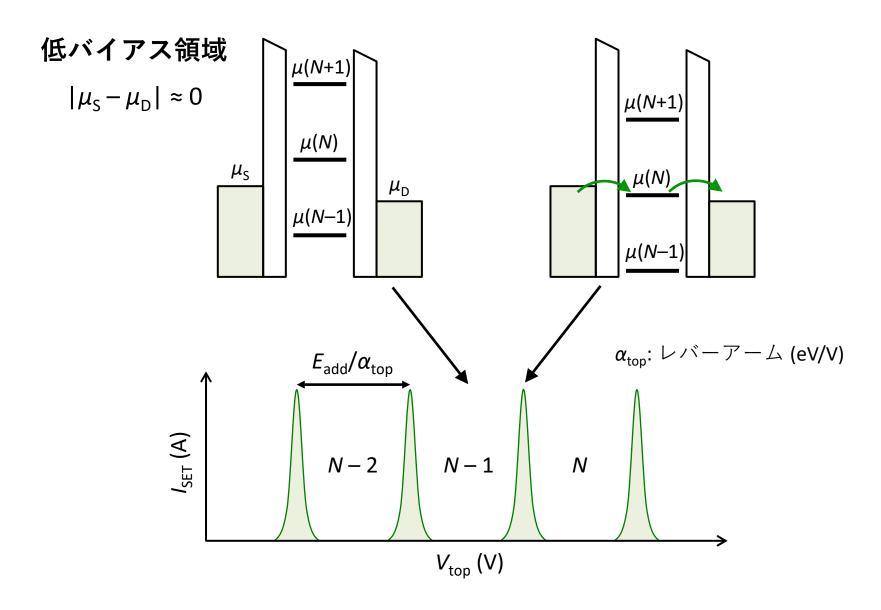
電気化学ポテンシャル

$$\mu(N) = E_{\rm C} \left(N - N_0 - \frac{1}{2} \right) - \frac{E_{\rm C}}{e} \left(C_{\rm S} V_{\rm S} + C_{\rm top} V_{\rm top} + C_{\rm D} V_{\rm D} \right) + E_N$$

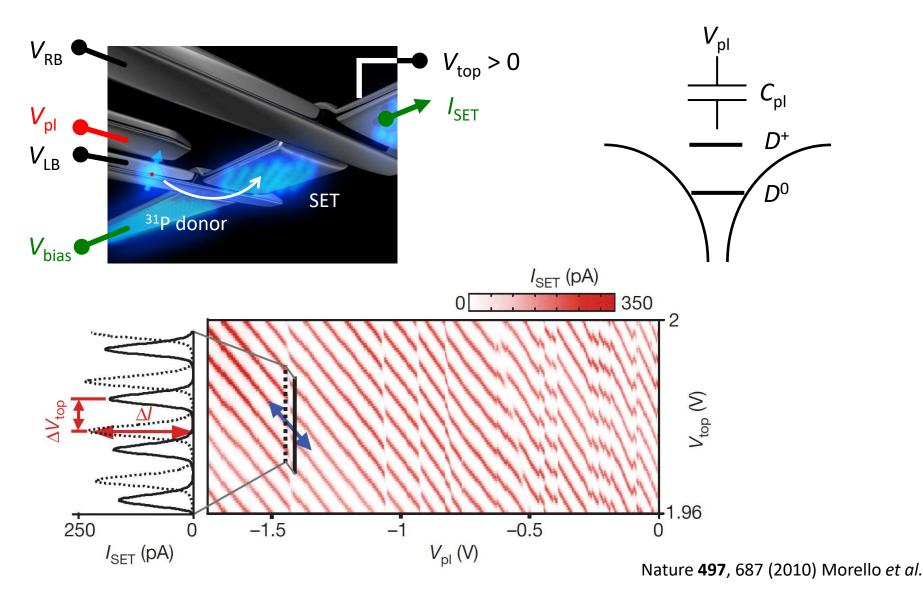
付加エネルギー

$$E_{\mathrm{add}}(N) = \mu(N+1) - \mu(N) = E_{\mathrm{C}} + \Delta E$$
 $E_{\mathrm{C}} = \frac{e^2}{C_{\Sigma}}$: 帯電エネルギー

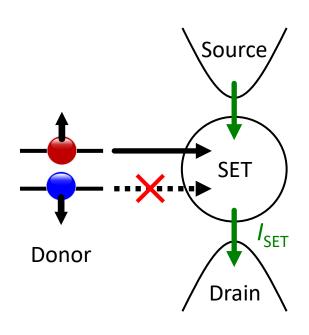
クーロン振動



ドナー・SETハイブリッド



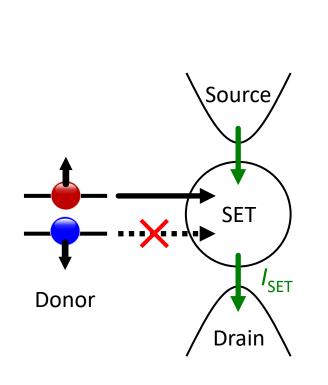
スピン・電荷変換

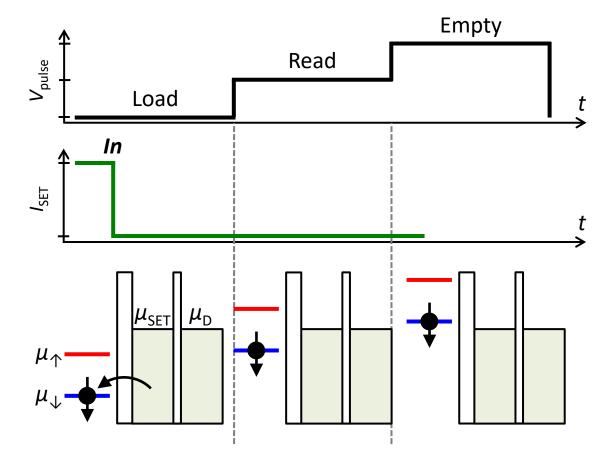


$$E(D^{+}) - E(D^{0}) = 45 \text{ meV}$$

 $E_{C} = 1.5 \text{ meV}$
 $E_{z} = 28 \text{ GHz} = 116 \mu\text{eV} (@B_{0} = 1 \text{ T})$
 $T_{\text{elec}} = 200 \text{ mK} = 17 \mu\text{eV}$

スピン測定(小)





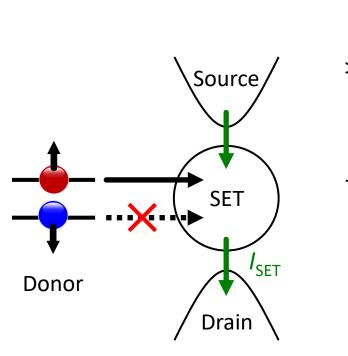
$$E(D^+) - E(D^0) = 45 \text{ meV}$$

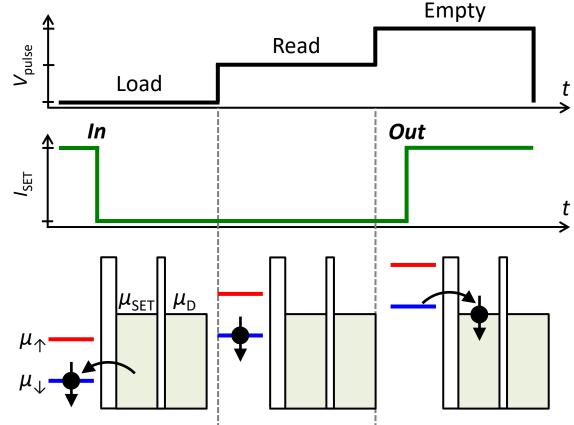
$$E_{\rm C} = 1.5 \; {\rm meV}$$

$$E_z = 28 \text{ GHz} = 116 \,\mu\text{eV} \,(@B_0 = 1 \text{ T})$$

$$T_{\rm elec}$$
 = 200 mK = 17 μ eV

スピン測定(小)





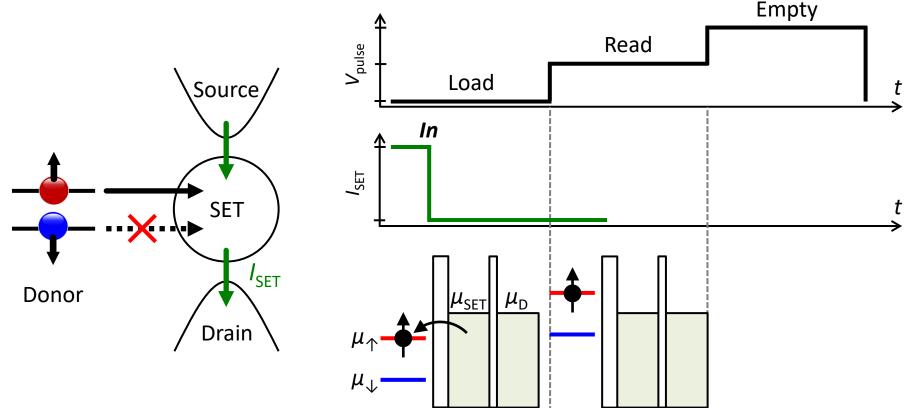
$$E(D^+) - E(D^0) = 45 \text{ meV}$$

$$E_{\rm C} = 1.5 \; {\rm meV}$$

$$E_z = 28 \text{ GHz} = 116 \,\mu\text{eV} \,(@B_0 = 1 \text{ T})$$

$$T_{\rm elec}$$
 = 200 mK = 17 μ eV

スピン測定(个)



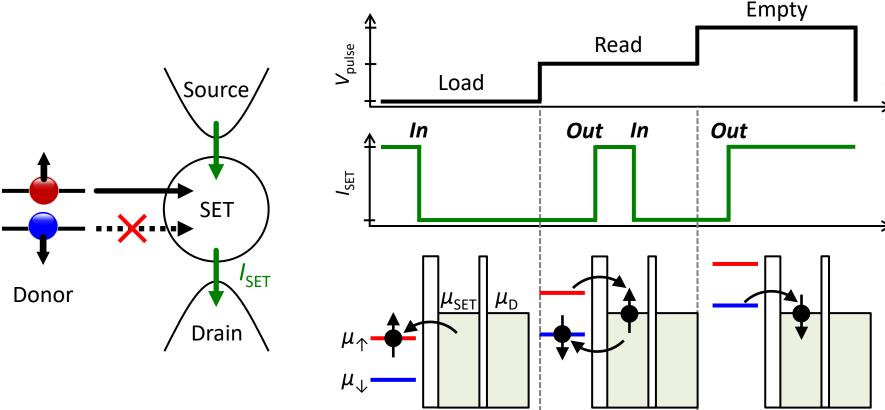
$$E(D^+) - E(D^0) = 45 \text{ meV}$$

$$E_{\rm C} = 1.5 \; {\rm meV}$$

$$E_z = 28 \text{ GHz} = 116 \,\mu\text{eV} \,(@B_0 = 1 \text{ T})$$

$$T_{\rm elec}$$
 = 200 mK = 17 μ eV

スピン測定(个)



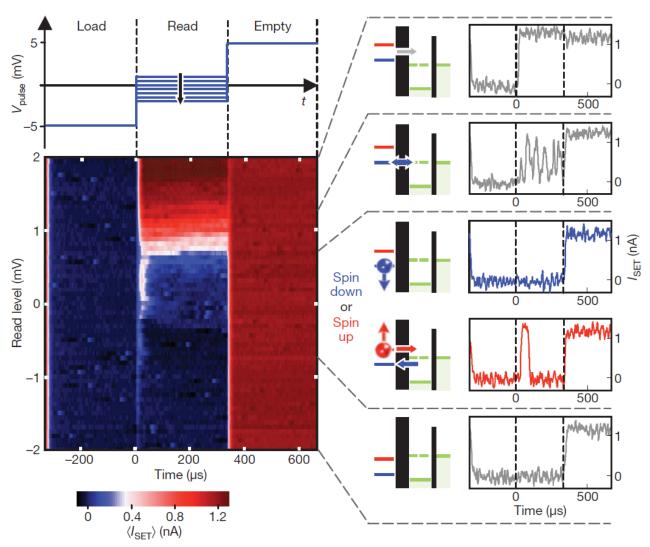
$$E(D^+) - E(D^0) = 45 \text{ meV}$$

$$E_{\rm C} = 1.5 \; {\rm meV}$$

$$E_z = 28 \text{ GHz} = 116 \,\mu\text{eV} \,(@B_0 = 1 \text{ T})$$

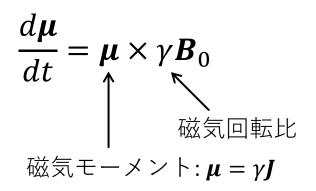
$$T_{\rm elec}$$
 = 200 mK = 17 μ eV

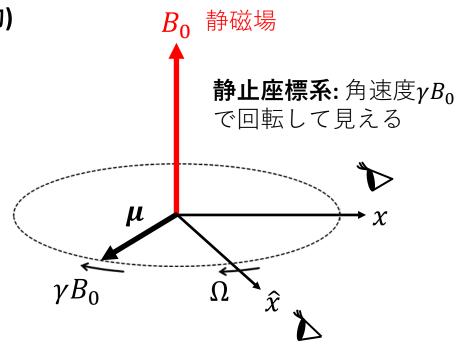
電子スピン単発読み出し



磁気共鳴

トルク方程式(ラーモア歳差運動)



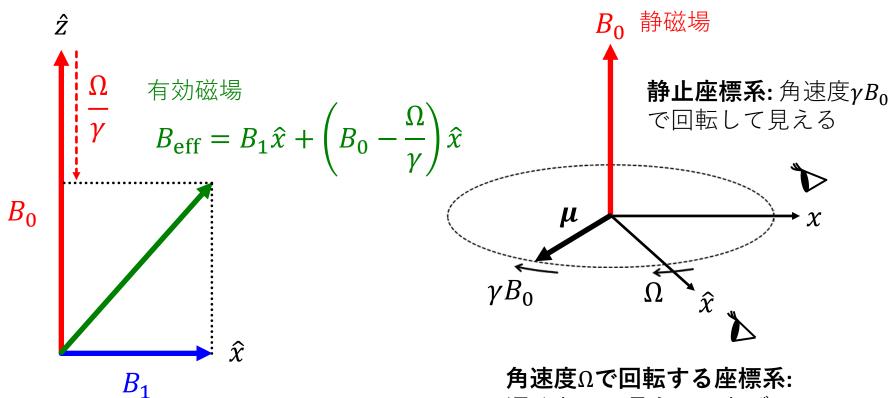


角速度Ωで回転する座標系:

遅くなって見える。なぜ??

z方向の磁場が弱くなったから

磁気共鳴



xy平面を角速度Ωで回転する交流磁場

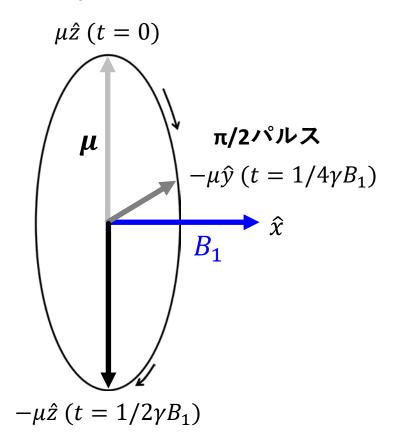
角速度Ωで回転する座標系: 遅くなって見える。なぜ??

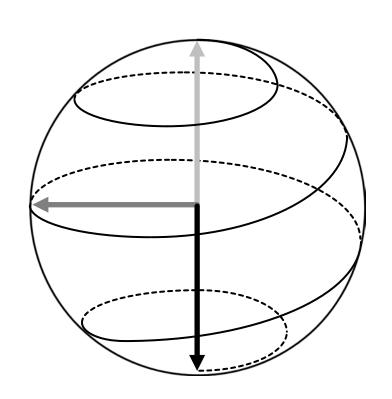
z方向の磁場が弱くなったから

磁気共鳴 = 1量子ビット操作

 $\Omega = \gamma B_0$ で回転する座標系

静止座標系





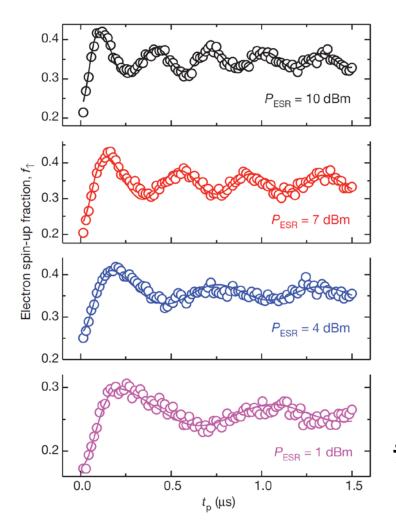
πパルス

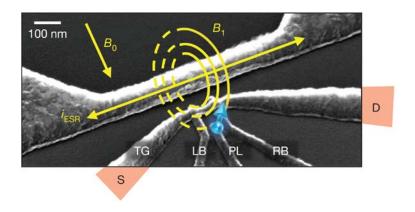
- 交流磁場の位相を調整すれば±x̂,±ŷ軸周りの回転が実現
- 静止座標系では*2*軸周りの回転が加わる

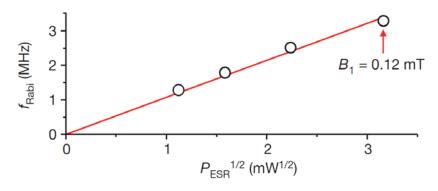
LETTER

A single-atom electron spin qubit in silicon

Jarryd J. Pla¹, Kuan Y. Tan¹†, Juan P. Dehollain¹, Wee H. Lim¹, John J. L. Morton²†, David N. Jamieson³, Andrew S. Dzurak¹ & Andrea Morello¹



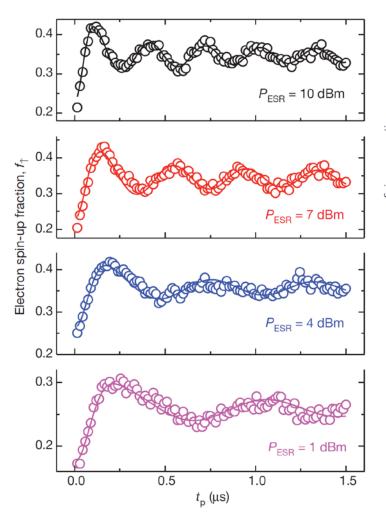


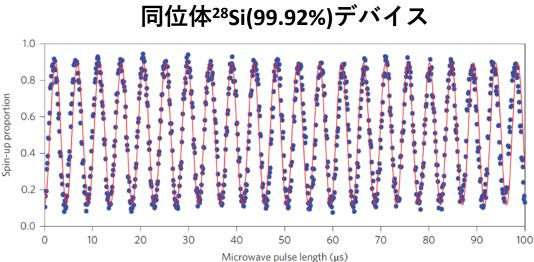


ラビ振動: natSiデバイス

A single-atom electron spin qubit in silicon

Jarryd J. Pla¹, Kuan Y. Tan¹†, Juan P. Dehollain¹, Wee H. Lim¹, John J. L. Morton²†, David N. Jamieson³, Andrew S. Dzurak¹ & Andrea Morello¹



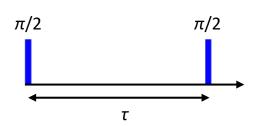


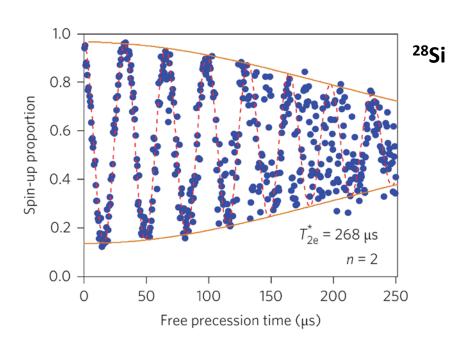
Nature Nano. 9, 986 (2014) Muhonen et al.

ラビ振動: natSiデバイス

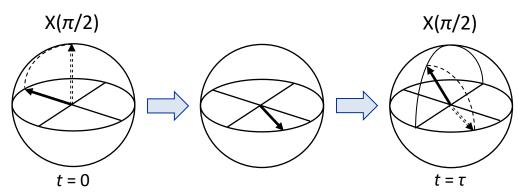
Nature 489, 541 (2012) Pla et al.

ラムゼー干渉: **T**₂*



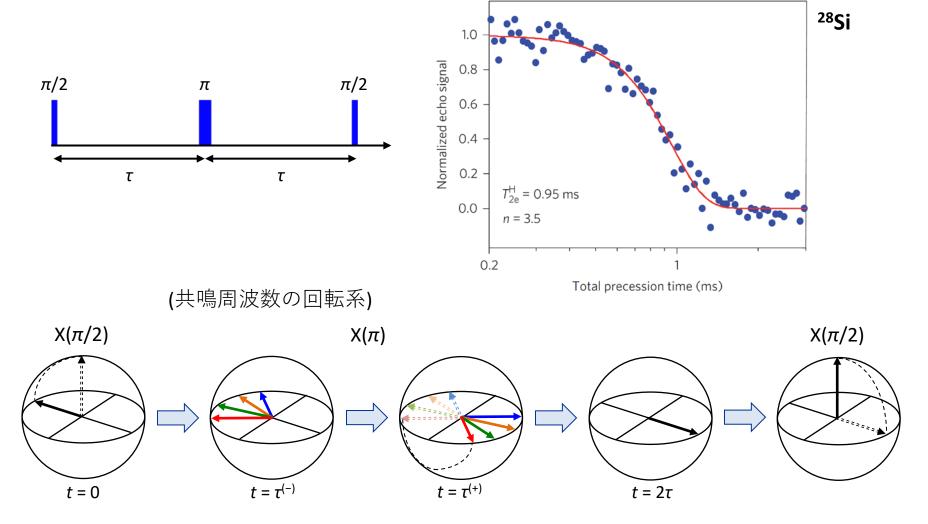


(共鳴から少し外れた回転系)



Nature Nano. 9, 986 (2014) Muhonen et al.

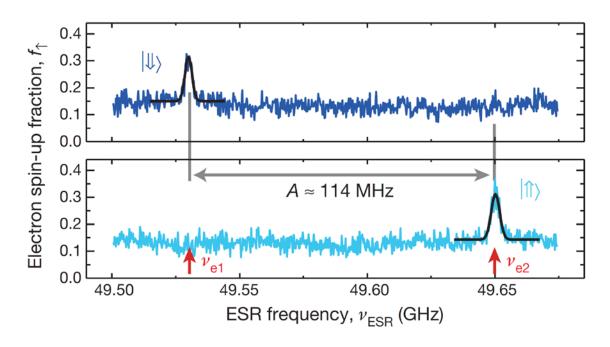
スピンエコー: 72



Nature Nano. 9, 986 (2014) Muhonen et al.

High-fidelity readout and control of a nuclear spin qubit in silicon

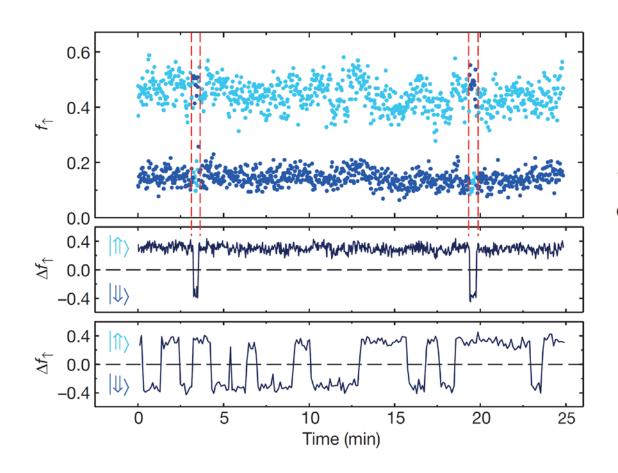
Jarryd J. Pla¹, Kuan Y. Tan¹†, Juan P. Dehollain¹, Wee H. Lim¹†, John J. L. Morton², Floris A. Zwanenburg¹†, David N. Jamieson³, Andrew S. Dzurak¹ & Andrea Morello¹

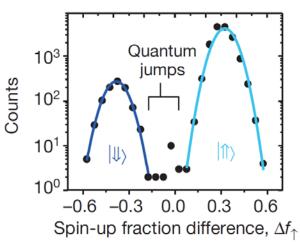


- 電子スピン遷移周波数 $v_{\rm e1,2}$ = $\gamma_{\rm e}B_0$ \mp $a_0/2$ は核スピン状態に依存する
- 電子スピン遷移によって核スピン状態は変わらない
- →量子非破壊(QND)測定

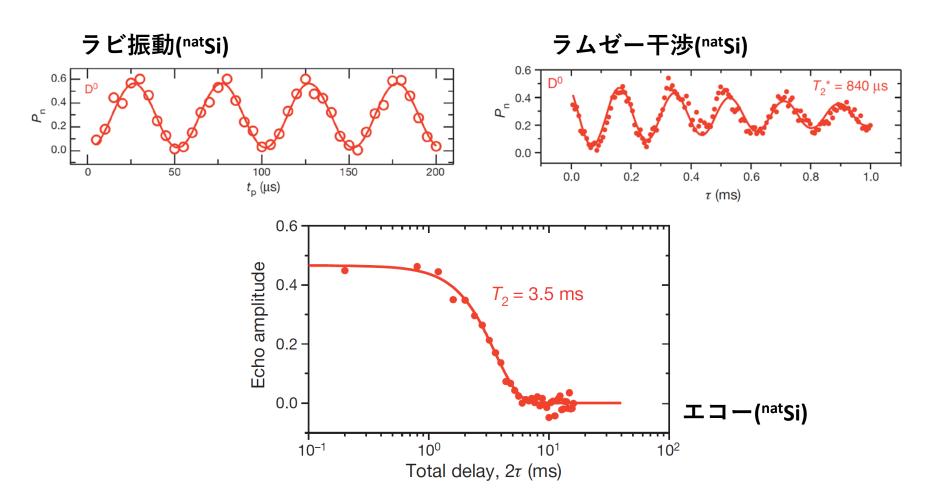
High-fidelity readout and control of a nuclear spin qubit in silicon

Jarryd J. Pla¹, Kuan Y. Tan¹†, Juan P. Dehollain¹, Wee H. Lim¹†, John J. L. Morton², Floris A. Zwanenburg¹†, David N. Jamieson³, Andrew S. Dzurak¹ & Andrea Morello¹

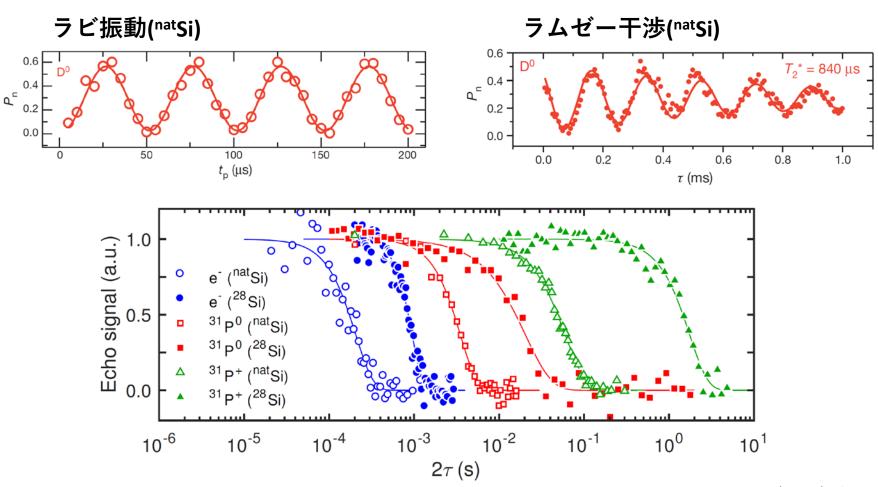




単一核スピンコヒーレント制御



単一核スピンコヒーレント制御



Nature 489, 541 (2012) Pla et al.

Nature 496, 334 (2013) Pla et al.

Nature Nano. 9, 986 (2014) Muhonen et al.

An addressable quantum dot qubit with fault-tolerant control-fidelity

M. Veldhorst^{1*}, J. C. C. Hwang¹, C. H. Yang¹, A. W. Leenstra², B. de Ronde², J. P. Dehollain¹, J. T. Muhonen¹, F. E. Hudson¹, K. M. Itoh³, A. Morello¹ and A. S. Dzurak^{1*}

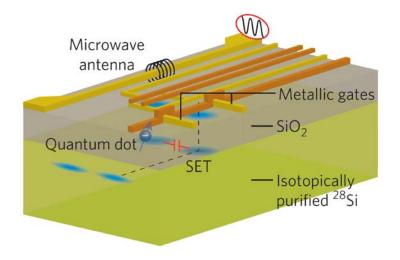
LETTER

doi:10.1038/nature15263

A two-qubit logic gate in silicon

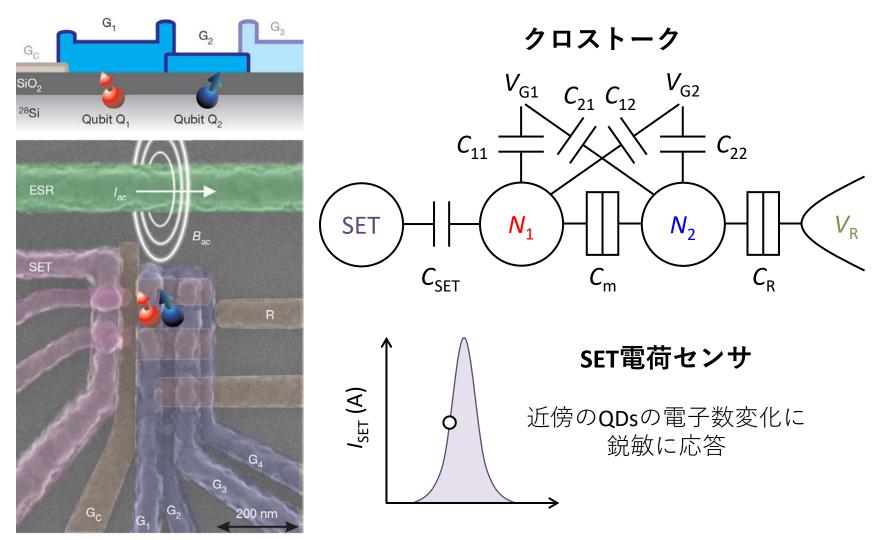
M. Veldhorst¹, C. H. Yang¹, J. C. C. Hwang¹, W. Huang¹, J. P. Dehollain¹, J. T. Muhonen¹, S. Simmons¹, A. Laucht¹, F. E. Hudson¹, K. M. Itoh², A. Morello¹ & A. S. Dzurak¹

(L to R) J. Muhonen, A. Morello, M. Veldhorst, A. Dzurak



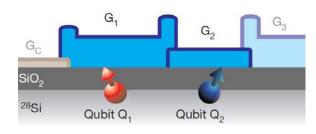
Nature Nano. **9**, 981 (2014) Veldhorst *et al.*Nature **526**, 410 (2015) Veldhorst *et al.*

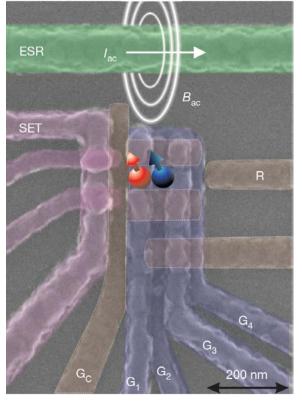
MOS型2重量子ドット

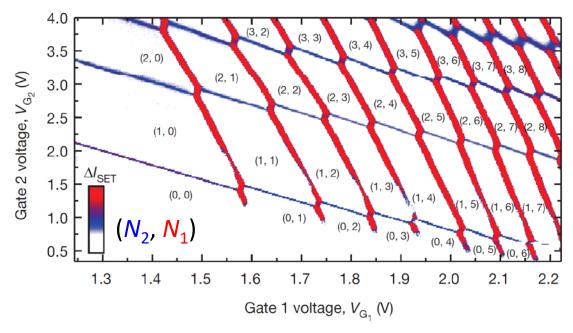


Nature **526**, 410 (2015) Veldhorst et al.

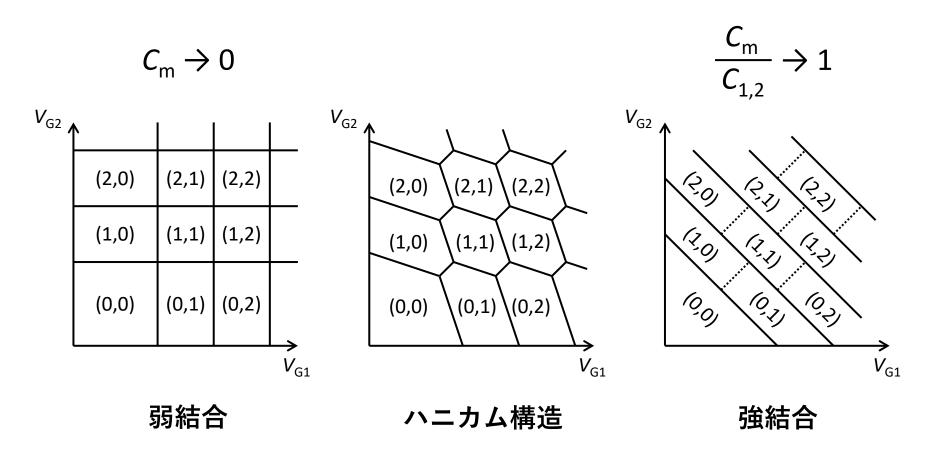
MOS型2重量子ドット







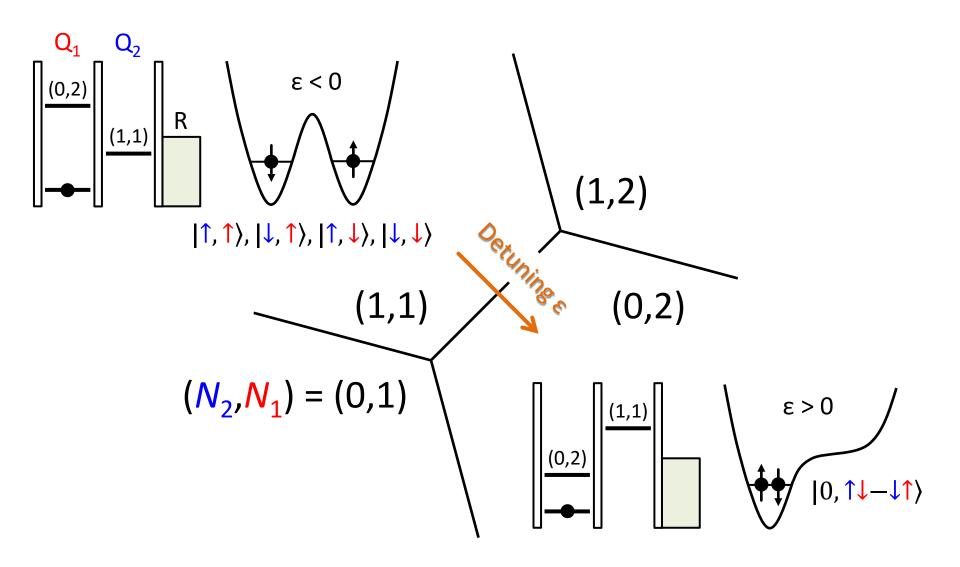
スタビリティダイアグラム

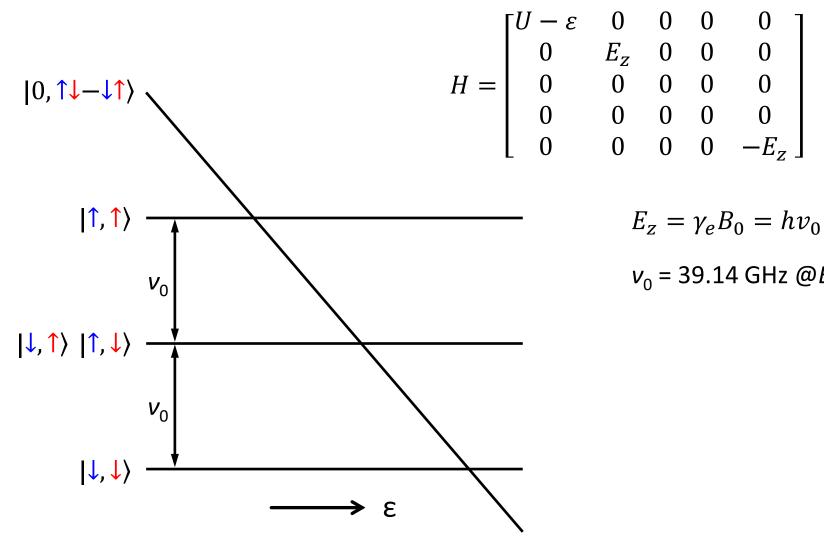


独立のドットとして 振る舞う

相互に影響しあう

1つのドットとして 振る舞う

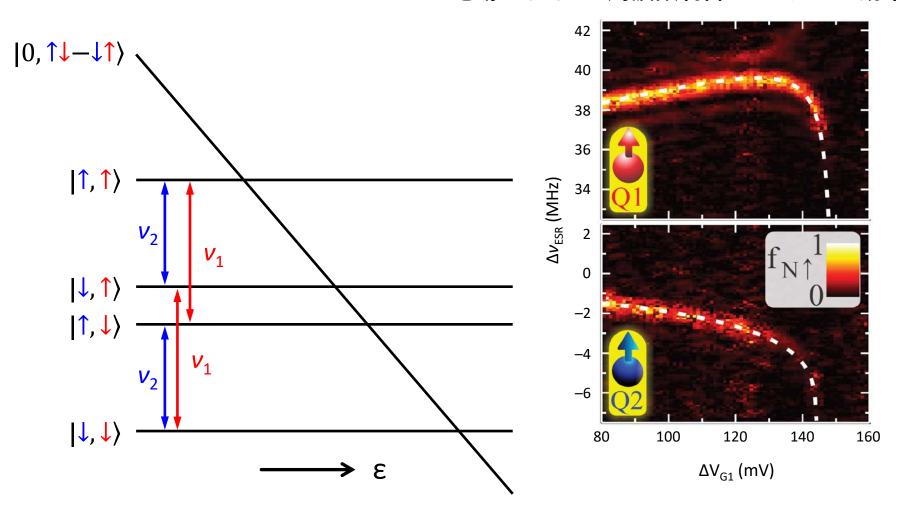




$$E_z = \gamma_e B_0 = h v_0$$

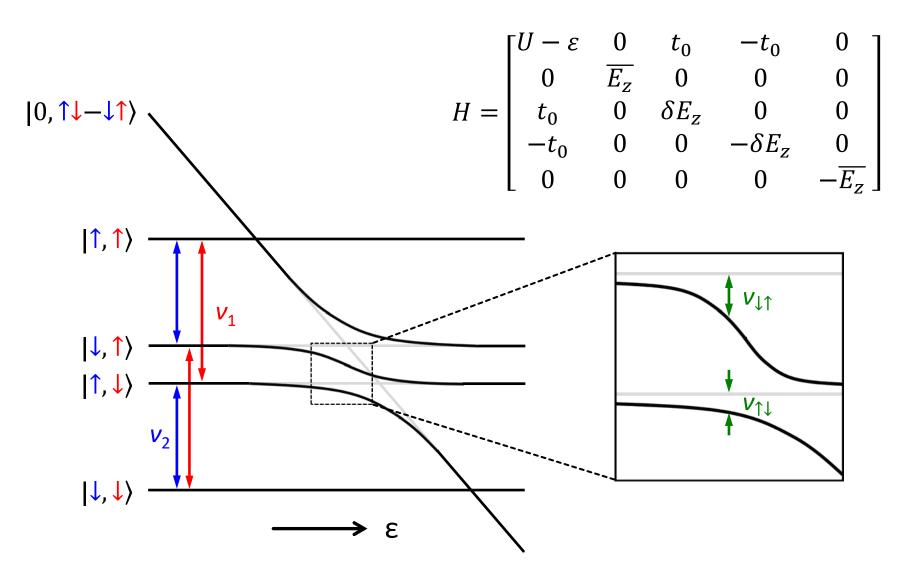
 $v_0 = 39.14 \text{ GHz } @B_0 = 1.4 \text{ T}$

電場によるESR周波数制御: シュタルク効果



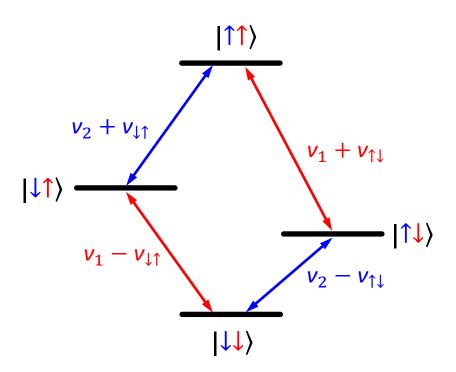
Nature **526**, 410 (2015) Veldhorst et al.





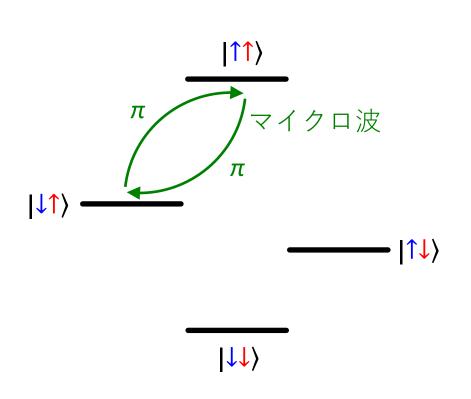
CROT(制御回転)ゲート

• $\epsilon \rightarrow 0$ では全ての遷移が異なる周波数を持つ



CROT(制御回転)ゲート

- $\epsilon \rightarrow 0$ では全ての遷移が異なる周波数を持つ
- 選択励起のπパルスにより2量子ビットゲートが実現可能



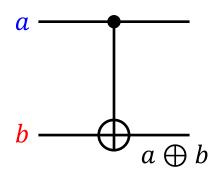
e.g. 制御NOTゲート

$$|\uparrow\uparrow\rangle = |11\rangle \longrightarrow |10\rangle$$

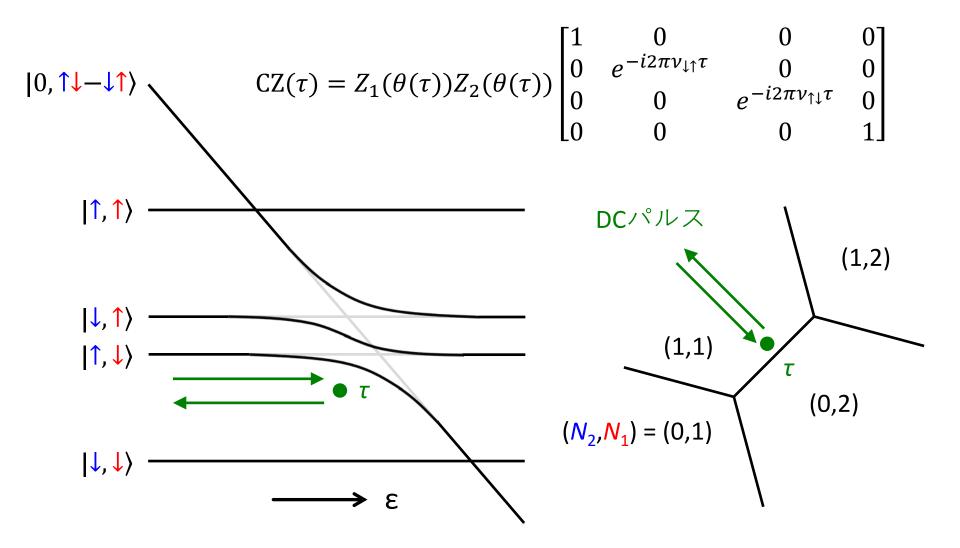
$$|\uparrow\downarrow\rangle = |10\rangle \longrightarrow |11\rangle$$

$$|\downarrow\uparrow\rangle = |01\rangle \longrightarrow |10\rangle$$

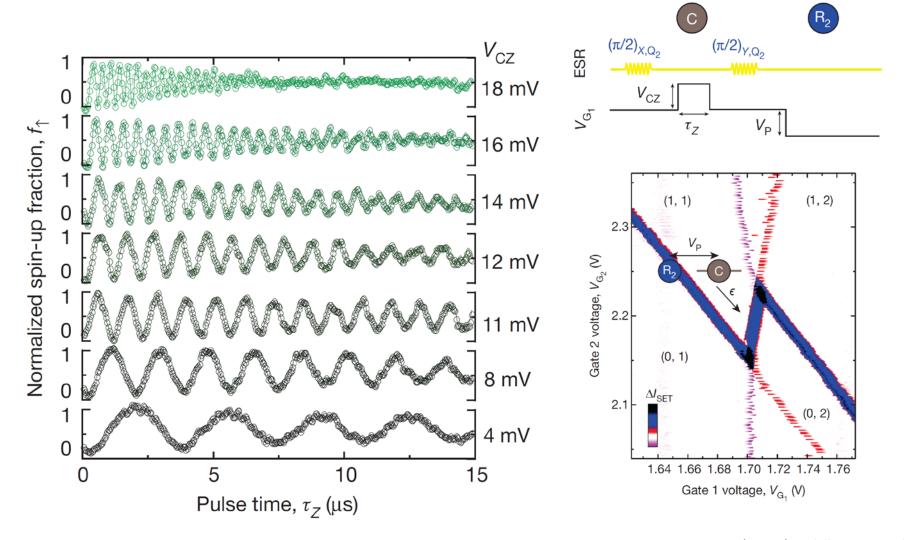
$$|\downarrow\downarrow\rangle = |00\rangle \longrightarrow |00\rangle$$



CZゲート

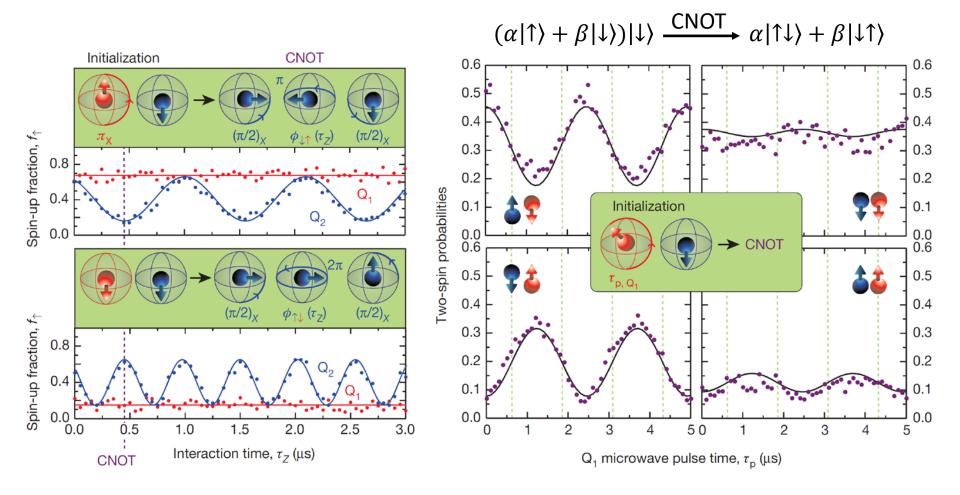


CZゲート

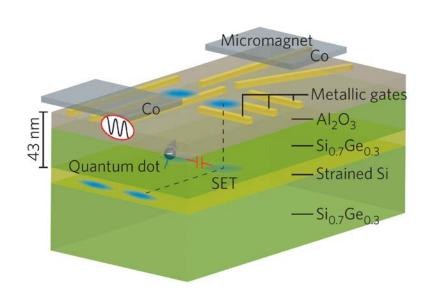


Nature **526**, 410 (2015) Veldhorst et al.

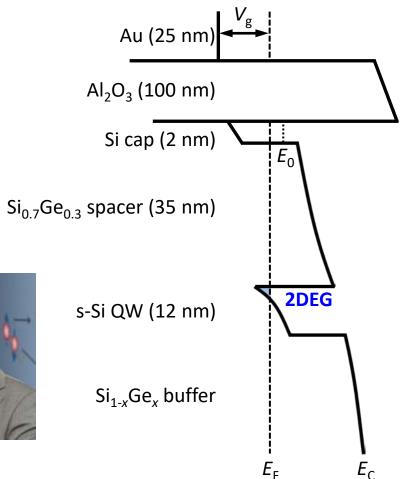
制御NOTゲート



Si/SiGeへテロ構造



ノンドープ構造による蓄積型QD



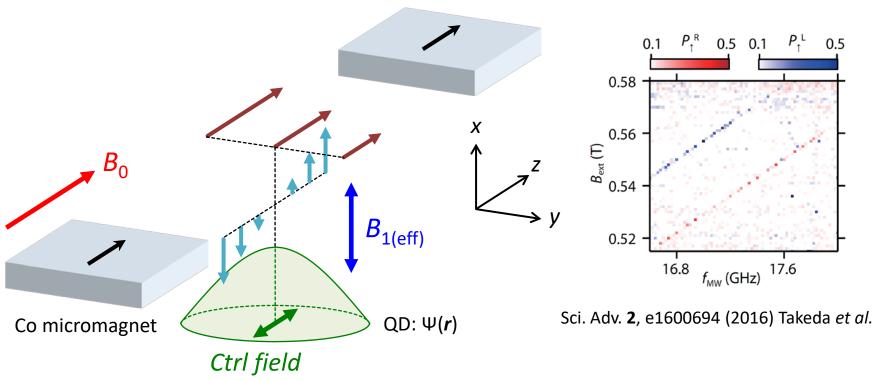
L. Vandersypen (©QuTech, TU Delft)

J. Petta (©Princeton)

S. Tarucha (©RIKEN)

電気双極子スピン共鳴

- **y方向の磁場勾配**によって共鳴周波数を制御
- ±z方向に電子波動関数を"揺する" ことでx方向に実効的な交流磁場を生成

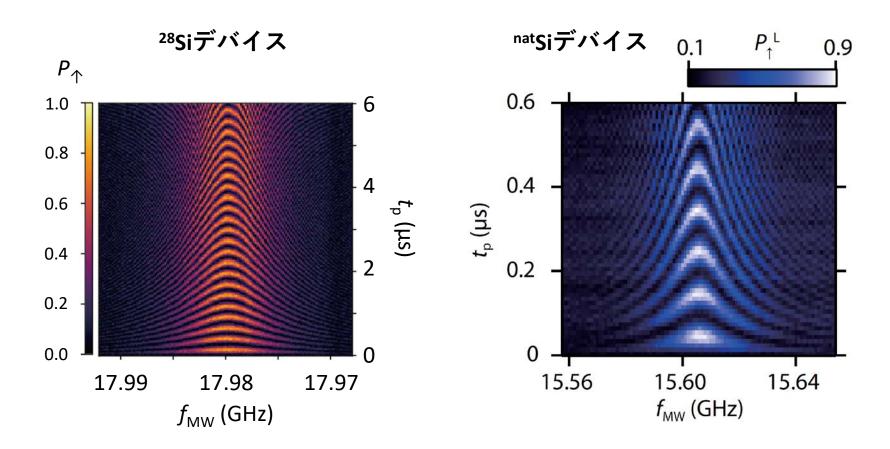


(Theory) Phys. Rev. Lett. 96, 047202 (2006) Tokura et al.

(GaAs QD) Nature Phys. 4, 776 (2008) Pioro-Ladrière et al.

(Magnet design) Appl. Phys. Express 8, 084401 (2015) Yoneda et al.

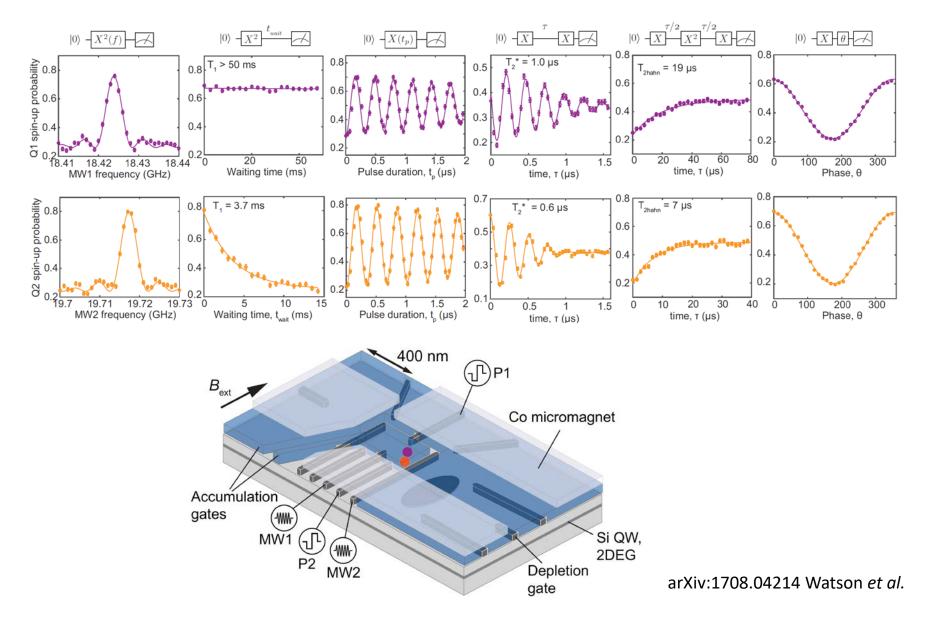
電気双極子スピン共鳴



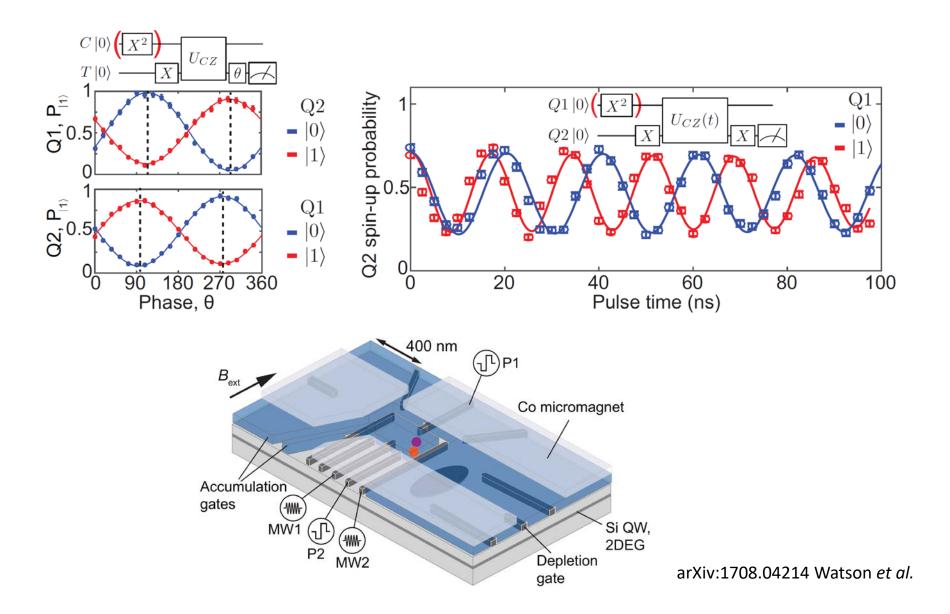
- ラビ周波数 ~30 MHz
- フィデリティ > 99.9%
- T_2^* ~20 µs, T_2 > 1 ms (with decoupling)

Sci. Adv. **2**, e1600694 (2016) Takeda *et al.* arXiv:1708.01454 Yoneda *et al.*

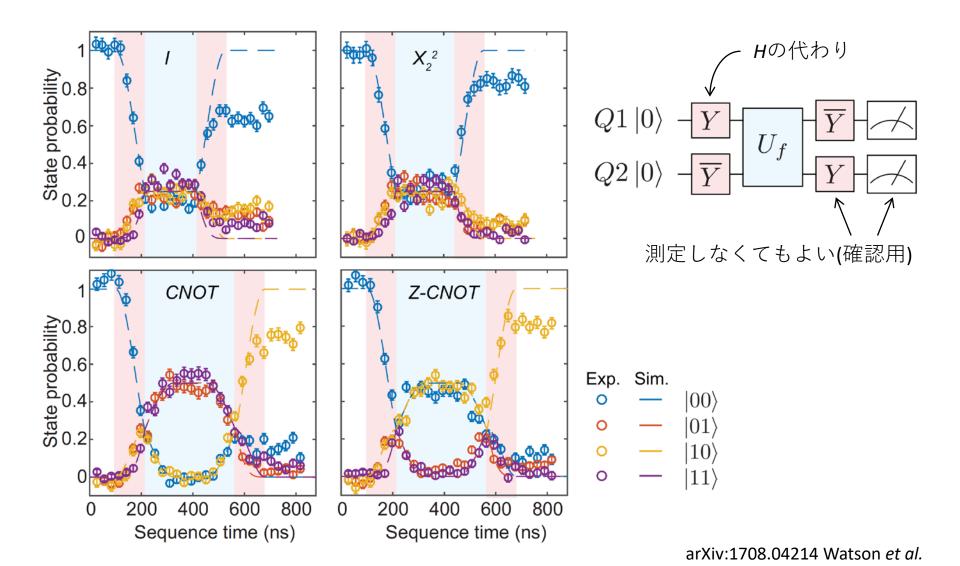
2重量子ドットデバイス



2重量子ドットデバイス

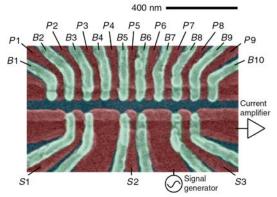


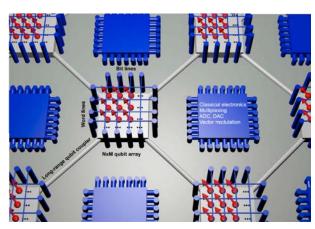
ドイチェ・ジョザアルゴリズムの実行



展望

- 多量子ビット化(アーキテクチャ、インターフェイス)
 - → npj Quant. Info. **1,** 15011 (2015) Reilly
 - → Phys. Rev. Appl. **6,** 054013 (2016) Zajac *et al.*
 - → npj Quant. Info. 3, 34 (2017) Vandersypen et al.





- フェルミオン系の量子シミュレーション
 - → Nature **548**, 70 (2017) Hensgens *et al.*

