Shor's Factoring Algorithm

School on Quantum Computing @Yagami

Day 2, Lesson 2
10:30-11:30, March 23, 2005

Eisuke Abe

Department of Applied Physics and Physico-Informatics,
and CREST-JST, Keio University

Outline

- Number theory for factoring
- Greatest common deviser and Euclidian method
- Chinese remainder theorem
- Quadratic equation for factoring
- Order of a modulo L
- Factoring algorithm
- Reduction to order finding
- Continued fractions algorithm
- Modular exponentiation

The inventor

© Aya Furuta

Number theory for factoring

Purpose

To reduce factoring to order finding

1. Greatest common divisor and Euclidian method
2. Chinese remainder theorem
3. Quadratic equation for factoring
4. Order of a modulo L

Greatest common divisor

Definition

The largest integer which is a divisor of two integers a and b is called "greatest common divisor of a and b ", and denoted as

$$
\operatorname{gcd}(a, b)
$$

If $\operatorname{gcd}(a, b)$ is equal to 1 , it is said that " a and b are co-prime"

Example

$$
\operatorname{gcd}(9,6)=3 \quad \operatorname{gcd}(5,3)=1
$$

Euclidian method

An efficient method for finding the gcd

Example

$$
133=95 \times 1+38
$$

$$
\operatorname{gcd}(494,133)=19
$$

$$
494=133 \times 3+95
$$

$$
95=38 \times 2+19
$$

$$
38=19 \times 2
$$

95

Chinese remainder theorem

(Below $n_{1}, n_{2}, s, t, L \ldots$ are all positive integers)
Let n_{1} and n_{2} be co-prime, i.e.,

$$
\operatorname{gcd}\left(n_{1}, n_{2}\right)=1
$$

p and q are the remainders of n_{1} and n_{2}, respectively, i.e.,

$$
\begin{aligned}
& 0 \leq p \leq n_{1}-1 \\
& 0 \leq q \leq n_{2}-1
\end{aligned}
$$

Then there exists a unique $s\left(1 \leq s \leq n_{1} n_{2}\right)$ that satisfies

$$
\begin{aligned}
& s \equiv p\left(\bmod n_{1}\right) \\
& s \equiv q\left(\bmod n_{2}\right)
\end{aligned}
$$

Chinese remainder theorem

Proof of uniqueness

Suppose there exists $t\left(1 \leq t \leq n_{1} n_{2}, t<s\right)$ that satisfies

$$
\begin{array}{ll}
t \equiv p\left(\bmod n_{1}\right) & \operatorname{gcd}(9,15) \neq 1 \\
t \equiv q\left(\bmod n_{2}\right) & 45 \equiv 0(\bmod 9) \\
45 \equiv 0(\bmod 15)
\end{array}
$$

Then

$$
\begin{array}{r}
s-t \equiv 0\left(\bmod n_{1}\right) \\
s-t \equiv 0\left(\bmod n_{2}\right)
\end{array} \Rightarrow s-t \equiv 0\left(\bmod n_{1} n_{2}\right)
$$

This means $s-t \geq n_{1} n_{2}$, which contradicts the assumption $1 \leq t<s \leq n_{1} n_{2}$

Chinese remainder theorem

Proof of existence

There are $n_{1} n_{2}$ possible pairs of p and q, and that $s\left(1 \leq s \leq n_{1} n_{2}\right)$ is unique
Thus there must exist s for any pair of p and q

Example

(Q.E.D)

$$
n_{1}=3, n_{2}=5
$$

s	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
p	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0
q	1	2	3	4	0	1	2	3	4	0	1	2	3	4	0

Quadratic equation for factoring

Consider the quadratic equation

$$
\begin{equation*}
x^{2} \equiv 1(\bmod L) \tag{1}
\end{equation*}
$$

Here $L=n_{1} n_{2}$ with $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$
Then there exist nontrivial solutions such that

$$
x \equiv \pm s(\bmod L)
$$

Here s is in the range $1<s<L-1$, and the gcd of L and $s \pm 1$ gives a nontrivial factor of L

Trivial solutions

$$
x= \pm 1(\bmod L)
$$

Thus $1, L-1, L$ are excluded as candidates for nontrivial solutions

Quadratic equation for factoring

Proof

Chinese remainder theorem assures there exists $s(1<s<L-1)$ that satisfies

$$
\begin{aligned}
& s \equiv 1\left(\bmod n_{1}\right) \\
& s \equiv-1\left(\bmod n_{2}\right)
\end{aligned}
$$

This is a nontrivial solution to Eq. (1), because

$$
\begin{aligned}
& s=1 \Rightarrow\left\{\begin{array}{l}
s \equiv 1\left(\bmod n_{1}\right) \\
s \equiv 1\left(\bmod n_{2}\right)
\end{array}\right. \\
& s=L-1 \Rightarrow\left\{\begin{array}{l}
s \equiv-1\left(\bmod n_{1}\right) \\
s \equiv-1\left(\bmod n_{2}\right)
\end{array}\right.
\end{aligned}
$$

$$
s=L \Rightarrow\left\{\begin{array}{l}
s \equiv 0\left(\bmod n_{1}\right) \\
s \equiv 0\left(\bmod n_{2}\right)
\end{array}\right.
$$

$$
\begin{aligned}
& s^{2}-1 \equiv 0\left(\bmod n_{1}\right) \\
& s^{2}-1 \equiv 0\left(\bmod n_{2}\right)
\end{aligned}
$$

$$
\Rightarrow \quad s^{2}-1 \equiv 0(\bmod L)
$$

$$
\operatorname{gcd}\left(n_{1}, n_{2}\right)=1
$$

Quadratic equation for factoring

Proof (cont'd)

Therefore,

$$
(s+1)(s-1) \equiv 0(\bmod L)
$$

On the other hand,

$$
0<s-1<s+1<L \quad 1<s<L-1
$$

Hence the gcd of L and $s \pm 1$ is a nontrivial factor of L, and much the same argument holds for

$$
\begin{aligned}
& s \equiv-1\left(\bmod n_{1}\right) \\
& s \equiv 1\left(\bmod n_{2}\right)
\end{aligned}
$$

Quadratic equation for factoring

Example

$$
n_{1}=3, n_{2}=5
$$

Trivial solutions

s	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
p	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0
q	1	2	3	4	0	1	2	3	4	0	1	2	3	4	0

Nontrivial solutions

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ 4 \equiv 1 (\operatorname { m o d } 3) } \\
{ 4 \equiv - 1 (\operatorname { m o d } 5) }
\end{array} \quad \left\{\begin{array}{l}
11 \equiv-1(\bmod 3) \\
11 \equiv 1(\bmod 5)
\end{array}\right.\right. \\
& \Rightarrow\left\{\begin{array} { l }
{ \operatorname { g c d } (1 5 , 3) = 3 } \\
{ \operatorname { g c d } (1 5 , 5) = 5 }
\end{array} \quad \Rightarrow \left\{\begin{array}{l}
\operatorname{gcd}(15,10)=5 \\
\operatorname{gcd}(15,12)=3
\end{array}\right.\right.
\end{aligned}
$$

Order of a modulo L

Definition

The least positive integer r that satisfies

$$
a^{r} \equiv 1(\bmod L)
$$

a is in the range $0 \leq a \leq L-1$, and co-prime to L

Solving Eq. (1)

$$
x^{2} \equiv 1(\bmod L)
$$

Find r, and if r is even, set

$$
s \equiv a^{r / 2}(\bmod L)
$$

If we are lucky, this is a nontrivial solution to Eq. (1), and we can factor L !

Order of a modulo $L=15$

Factoring 15

a	r	$a^{r / 2} \pm 1$	gcd w/ 15	
2	4	3, 5	3,5	$2^{4}=16 \equiv 1$
4	2	3, 5	3, 5	$4^{2}=16 \equiv 1$
7	4	48, 50	3, 5	$7^{4}=(49)^{2} \equiv 4^{2} \equiv 1$
8	4	63, 65	3, 5	$8^{4} \equiv(-7)^{4} \equiv 1$
11	2	10, 15	5, 3	$11^{2} \equiv(-4)^{2} \equiv 1$
13	4	168, 170	3, 5	$13^{4} \equiv(-2)^{4} \equiv 1$

We already know " 14 " yields a trivial solution, so, may well set the range of a as $1<a<14$

Order of a modulo $L=21$

Factoring 21

a	r	$a^{r / 2} \pm 1$	gcd w/ 21
2	6	7,9	7,3
4	3		
Odd r			
	6	124,126	19,21
8	2	7,9	7,3
10	6	999,1001	3,7
11	6	1330,1332	7,3
13	2	12,14	3,7
16	3		
17	6	4912,4914	19,21
Odivial solution r			
	6	6858,6860	3,7

"ay modulo L " is a permutation

Define $\pi(y)$ as ay $(\bmod L)$

Example

$$
L=15, a=7
$$

$$
\operatorname{gcd}(L, a)=1
$$

y	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$\pi(y)$	0	7	14	6	13	5	12	4	11	3	10	2	9	1	8

$$
7 \times 0(\bmod 15)=0 \quad 11 \times 0(\bmod 15)=0
$$

$$
7 \times 1(\bmod 15)=7 \quad 11 \times 1(\bmod 15)=11
$$

$$
7 \times 2(\bmod 15)=14 \quad 11 \times 2(\bmod 15)=7
$$

$$
L=15, a=11 \quad 7 \times 3(\bmod 15)=6 \quad 11 \times 3(\bmod 15)=3
$$

y	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$\pi(y)$	0	11	7	3	14	10	6	2	13	9	5	1	12	8	4

Reduction to order finding

Now we can identify "ay mod L " as "permutation"

$$
\pi(y) \Leftrightarrow a y(\bmod L)
$$

For instance,

$$
\begin{aligned}
\pi^{3}(y) & \Leftrightarrow a(a(a y))(\bmod L) \\
& \Leftrightarrow a^{3} y(\bmod L)
\end{aligned}
$$

Thus "finding the order of $a \bmod L$ " is equivalent to "finding the order of $\pi(1)$ "

$$
a^{r} \equiv 1(\bmod L) \Leftrightarrow \pi^{r}(1)=1
$$

Order of a modulo L

Example

$L=15, a=7$

y	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$\pi(y)$	0	7	14	6	13	5	12	4	11	3	10	2	9	1	8

$\pi^{4}(1)$
$7^{4 / 2}-1=48 \rightarrow \operatorname{gcd}(15,48)=3$

$$
7^{4 / 2}+1=50 \rightarrow \operatorname{gcd}(15,50)=5
$$

Succeed!

Order of a modulo L

Example

$L=15, a=11$

y	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$\pi(y)$	0	11	7	3	14	10	6	2	13	9	5	1	12	8	4

$$
\underset{\pi^{2}(1)}{\substack{\mid 1 \\ \pi^{1}(1)}}
$$

$11^{2 / 2}-1=10 \rightarrow \operatorname{gcd}(15,10)=5$
$11^{2 / 2}+1=12 \rightarrow \operatorname{gcd}(15,12)=3$
Succeed!

Factoring algorithm

The algorithm fails when L is ...

1. even
2. a prime number
3. a prime power

Those can be checked efficiently by classical methods before we run the algorithm

Flowchart

Order finding for factoring

$$
\begin{aligned}
\Pi_{1}|x\rangle|1\rangle & =|x\rangle\left|\pi^{x}(1)\right\rangle \\
& =|x\rangle\left|a^{x}(\bmod L)\right\rangle
\end{aligned}
$$

Nothing changes...
We have only to replace $\pi(y)$
by ay $(\bmod L)$ with $y=1$

Remaining issues

Now is the time to answer those questions!

- The measurement does not give us r itself, then how to obtain r out of the measurement result?
- What if r does not divide N ?
- How to construct the Π_{1} gate?
- If it remains a black box, how can the algorithm be useful?

Remaining issues

Now is the time to answer those questions!

- The measurement does not give us r itself, then how to obtain r out of the measurement result?
- What if r does not divide N ?
- How to construct the Π_{1} gate?
- If it remains a black box, how can the algorithm be useful?

Continued fractions algorithm

Split

$$
\begin{aligned}
& \alpha=\frac{31}{13}=2+\frac{5}{13} \\
& =2+\frac{1}{2+\frac{3}{5}} \\
& =2+\frac{1}{2+\frac{1}{1+\frac{2}{3}}} \\
& =2+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}}=[2,2,1,1,2] \\
& =2+\frac{1}{\frac{13}{5}} \\
& =2+\frac{1}{2+\frac{1}{\frac{5}{3}}} \\
& =2+\frac{1}{2+\frac{1}{1+\frac{1}{\frac{3}{2}}}}
\end{aligned}
$$

Invert

Continued fractions algorithm

$$
\begin{array}{ll}
\frac{p_{0}}{q_{0}}=[2]=\frac{2}{1}=2 & \left\{p_{n} / q_{n}\right\} \text { produce } \\
\frac{p_{1}}{q_{1}}=[2,2]=2+\frac{1}{2}=\frac{5}{2}=2.5 & \text { better and better } \\
\frac{p_{2}}{q_{2}}=[2,2,1]=2+\frac{1}{2+\frac{1}{1}}=\frac{7}{3}=2.3 & \text { approximations of } \alpha \\
\frac{p_{3}}{q_{3}}=[2,2,1,1]=2+\frac{1}{2+\frac{1}{1+\frac{1}{1}}}=\frac{12}{5}=2.4 \\
\frac{p_{4}}{q_{4}}=[2,2,1,1,2]=\frac{31}{13}=\alpha=2.384615 \cdots
\end{array}
$$

Continued fractions algorithm

Given the continued fraction expansion

$$
\alpha=\left[a_{0}, a_{1}, \cdots, a_{m}\right]
$$

Then the nth convergent of α is given by

$$
\begin{aligned}
p_{n} & =a_{n} p_{n-1}+p_{n-2} \\
q_{n} & =a_{n} q_{n-1}+q_{n-2}
\end{aligned} \quad \text { with } \quad\left(p_{-2}, q_{-2}\right)=(0,1)
$$

n	-2	-1	0	1	2	3	4
a_{n}	-	-	2	2	1	1	2
p_{n}	0	1	2	5	7	12	31
q_{n}	1	0	1	2	3	5	13

It can be shown that p_{n} and q_{n} are co-prime

Continued fractions algorithm

Suppose k / r is a rational number such that

$$
\left|\frac{k}{r}-\varphi\right| \leq \frac{1}{2 r^{2}}
$$

Then k / r is a convergent of the continued fraction for φ

The inequality holds if φ is an approximation of k / r accurate to $2 l+1$ bits

$$
\left|\frac{k}{r}-\varphi\right| \leq \frac{1}{2^{2 l+1}} \leq \frac{1}{2 r^{2}} \quad \begin{aligned}
& l \equiv\left\lceil\log _{2} L\right\rceil \quad\left(2^{l-1}<L \leq 2^{l}\right) \\
& 2^{2 l+1}=2\left(2^{l}\right)^{2} \geq 2 L^{2} \geq 2 r^{2}
\end{aligned}
$$

Case study: Factoring 39

Step 1: Choose random a coprime to L

$$
a=7
$$

Step 2: Find r

$$
r=12
$$

Continued fractions algorithm after measurement

Step 3: Compute $\operatorname{gcd}\left(L, a^{r / 2} \pm 1\right)$
$7^{12 / 2}-1 \equiv 24(\bmod 39) \rightarrow \operatorname{gcd}(39,24)=3$
$7^{12 / 2}+1 \equiv 26(\bmod 39) \rightarrow \operatorname{gcd}(39,26)=13$

Determining r after measurement

$$
\approx \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{2 \pi i m k / r}\left|\frac{N}{r} k\right\rangle \stackrel{\nearrow}{\longrightarrow}|\lambda\rangle \approx\left|\frac{N}{r} k\right\rangle
$$

Example

$$
\begin{aligned}
L & =39 \\
a & =7 \\
r & =12 \\
l & =\left\lceil\log _{2} L\right\rceil=6 \\
N & =2^{2 l+1}=8192
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3413}{8192}=0+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{170+\frac{1}{4}}}}} \\
& \frac{\lambda}{\frac{\lambda}{r}}
\end{aligned}
$$

$$
k=5
$$

$$
\lambda=3413 \quad \frac{N k}{r}=\frac{8192 \cdot 5}{12}=3413.3
$$

Determining r after measurement

n	-2	-1	0	1	2	3	4	5
a_{n}	-	-	0	2	2	2	170	4
p_{n}	0	1	0	1	2	5	852	3413
q_{n}	1	0	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{1 2}$	$\mathbf{2 0 4 5}$	$\mathbf{8 1 9 2}$

$\frac{p_{1}}{q_{1}}=\frac{1}{2} \quad \frac{p_{2}}{q_{2}}=\frac{2}{5} \quad \frac{p_{3}}{q_{3}}=\frac{5}{12} \quad \frac{p_{4}}{q_{4}}=\frac{852}{2045} \quad \frac{p_{5}}{q_{5}}=\frac{3413}{8192}$
Candidates for k / r

$$
r \leq L=39
$$

Compute $a^{q_{n}}(\bmod L)$
Know that $q_{3}=12$ is the order

Remaining issues

Now is the time to answer those questions!

- The measurement does not give us r itself, then how to obtain r out of the measurement result?
- What if r does not divide N ?
- How to construct the Π_{1} gate?
- If it remains a black box, how can the algorithm be useful?

Π_{1} gate

$$
\begin{array}{r}
\Pi_{1}|x\rangle|1\rangle=|x\rangle\left|a^{x}(\bmod L)\right\rangle \\
x=2^{n-1} x_{n}+2^{n-2} x_{n-1}+\cdots+2 x_{1}+x_{0}
\end{array}
$$

$$
\begin{aligned}
a^{x}(\bmod L) & =a^{2^{n-1} x_{n}+2^{n-2} x_{n-1}+\cdots 2 x_{1}+x_{0}}(\bmod L) \\
& =\left[a^{2^{n-1}}(\bmod L)\right]^{x_{n}}\left[a^{2^{n-2}}(\bmod L)\right]^{x_{n-1}} \cdots[a(\bmod L)]^{x_{0}}
\end{aligned}
$$

Controlled- U gates

$$
|y\rangle=a^{2^{k}}=\left|y a^{2^{k}}(\bmod L)\right\rangle
$$

Modular exponentiation

We must at least calculate $a^{2^{k}}(\bmod L)$ classically by repeated squaring

$$
\left(a^{2^{k-1}}\right)^{2}=a^{2^{k}}
$$

The circuit is constructed without knowing the order itself

Case study: Factoring 15

Step 1: Choose random a coprime to L

$$
a=7
$$

Step 2: Find r

$$
r=4
$$

Concrete construction of П gate due to Vandersypen et al. will be given in the following slides

Step 3: Compute $\operatorname{gcd}\left(L, a^{r / 2} \pm 1\right)$

$$
\begin{aligned}
& 7^{4 / 2}-1=48 \rightarrow \\
& \operatorname{gcd}(15,48)=3 \\
& 7^{4 / 2}+1=50 \rightarrow \\
& \operatorname{gcd}(15,50)=5
\end{aligned}
$$

Finding r of a modulo 15

a	a^{2}	a^{4}	r
2	4	1	4
4	1	1	2
7	4	1	4
8	4	1	4
11	1	1	2
13	4	1	4

$$
a^{2^{k}}|y\rangle=\left|y a^{2^{k}}(\bmod L)\right\rangle
$$

Only needed when Trivial

$$
a=2,7,8,13
$$

In reality, if $r=2^{k}$, a quantum computer is not necessary (Know r during repeated squaring)

Modular exponentiation

Example: $a=7$

$$
\begin{aligned}
& a(\bmod 15) \\
= & (a-1)+1(\bmod 15) \\
= & (4 \cdot 1+2 \cdot 1)+1(\bmod 15) \quad y=8 y_{3}+4 y_{2}+2 y_{1}+y_{0}
\end{aligned}
$$

For other a, the gate is constructed in a similar fashion

Modular exponentiation

Example: $a=7$ (and 2, 8, 13)

$a^{2} y(\bmod 15)$

$=4 \times\left(8 y_{3}+4 y_{2}+2 y_{1}+y_{0}\right)(\bmod 15) \quad a^{2}=4(\bmod 15)$
$=32 y_{3}+16 y_{2}+8 y_{1}+4 y_{0}(\bmod 15) \quad 32=2(\bmod 15)$
$=2 y_{3}+y_{2}+8 y_{1}+4 y_{0}(\bmod 15) \quad 16=1(\bmod 15)$
$=8 y_{1}+4 y_{0}+2 y_{3}+y_{2}(\bmod 15)$

Quantum circuit for factoring 15

Where are we now?

Climbing Mt. Quantum Computation

We are still at the foot of the mountain...

Thank you for your attention!!

