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Number theory for factoring
Purpose

To reduce factoring to order finding

1. Greatest common divisor and 
Euclidian method

2. Chinese remainder theorem
3. Quadratic equation for factoring
4. Order of a modulo L



Greatest common divisor
Definition

The largest integer which is a divisor of two 
integers a and b is called “greatest common 
divisor of a and b”, and denoted as

),gcd( ba
If gcd(a, b) is equal to 1, it is said that “a and b
are co-prime”

Example
3)6,9gcd( = 1)3,5gcd( =



Euclidian method

494
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953133494 +×=

38

38195133 +×=

19

1923895 +×=

Filling the floor of a rectangular 
room with square tiles

An efficient method for 
finding the gcd

Example
)133,494gcd(

21938 ×=
19=



Chinese remainder theorem
(Below n1, n2, s, t, L ... are all positive integers)

Let n1 and n2 be co-prime, i.e.,
1),gcd( 21 =nn
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Then there exists a unique s (1 ≤ s ≤ n1 n2) that 
satisfies

p and q are the remainders of n1 and n2, 
respectively, i.e.,
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Chinese remainder theorem
Proof of uniqueness

Suppose there exists t (1 ≤ t ≤ n1 n2, t < s) that 
satisfies
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≡
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This means s − t ≥ n1 n2, which contradicts 
the assumption 1 ≤ t < s ≤ n1 n2



Chinese remainder theorem
Proof of existence

There are n1n2 possible pairs of p and q, and 
that s (1 ≤ s ≤ n1 n2) is unique
Thus there must exist s for any pair of p and q

Example

043210432104321q
021021021021021p

151413121110987654321s

n1 = 3, n2 = 5

(Q.E.D)



Quadratic equation for factoring
Consider the quadratic equation

)(mod12 Lx ≡ ...(1)

Here L = n1n2 with gcd(n1, n2) = 1

)(mod Lsx ±≡
Then there exist nontrivial solutions such that

Here s is in the range 1 < s < L − 1, and the gcd of 
L and s ± 1 gives a nontrivial factor of L

Trivial solutions
)(mod1 Lx ±= Thus 1, L − 1, L are excluded as 

candidates for nontrivial solutions



Quadratic equation for factoring
Proof

Chinese remainder theorem assures there 
exists s (1 < s < L − 1) that satisfies
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This is a nontrivial solution 
to Eq. (1), because
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Quadratic equation for factoring
Proof (cont’d)

Therefore,
)(mod0)1)(1( Lss ≡−+

Lss <+<−< 110
On the other hand,

11 −<< Ls

(Q.E.D)

Hence the gcd of L and s ± 1 is a nontrivial factor 
of L, and much the same argument holds for
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Quadratic equation for factoring
Example

n1 = 3, n2 = 5 Trivial solutions

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0

q 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0

Nontrivial solutions

⎩
⎨
⎧

=
=

⇒

⎩
⎨
⎧

−≡
≡

5)5,15gcd(
3)3,15gcd(

)5(mod14
)3(mod14

⎩
⎨
⎧

=
=

⇒

⎩
⎨
⎧

≡
−≡

3)12,15gcd(
5)10,15gcd(

)5(mod111
)3(mod111



Order of a modulo L
Definition

The least positive integer r that satisfies

)(mod1 Lar ≡
a is in the range 0 ≤ a ≤ L − 1, and co-prime to L

Solving Eq. (1)
Find r, and if r is even, set

)(mod2/ Las r≡

)(mod12 Lx ≡

If we are lucky, this is a nontrivial solution to 
Eq. (1), and we can factor L!



Order of a modulo L = 15
Factoring 15 

a r ar/2 ± 1 gcd w/ 15
2 4 3, 5 3, 5
4 2 3, 5 3, 5
7 4 48, 50 3, 5
8 4 63, 65 3, 5

11 2 10, 15 5, 3
13 4 168, 170 3, 5 12)(13

14)(11
17)(8

14(49)7
1164
1162

44

22

44

224
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4

≡−≡
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≡≡=
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We already know “14” yields a trivial solution, so, 
may well set the range of a as 1 < a < 14



Order of a modulo L = 21
Factoring 21

a r ar/2 ± 1 gcd w/ 21
2 6 7, 9 7, 3
4 3
5 6 124, 126 19, 21
8 2 7, 9 7, 3

10 6 999, 1001 3, 7
11 6 1330, 1332 7, 3
13 2 12, 14 3, 7
16 3
17 6 4912, 4914 19, 21
19 6 6858, 6860 3, 7

Odd r
Trivial solution

Odd r
Trivial solution



“ay modulo L” is a permutation

615)(mod37
1415)(mod27
715)(mod17
015)(mod07

=×
=×
=×
=×

y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

π (y) 0 7 14 6 13 5 12 4 11 3 10 2 9 1 8

L = 15, a = 7

Define π (y) as ay (mod L)
Example 1),gcd( =aL

48121591326101437110π (y)

14131211109876543210y

315)(mod311
715)(mod211
1115)(mod111
015)(mod011

=×
=×
=×
=×

L = 15, a = 11



Reduction to order finding
Now we can identify “ay mod L” as “permutation”

)(mod)( Layy ⇔π
For instance,

)(mod
)(mod))(()(

3

3

Lya
Layaay

⇔
⇔π

1)1()(mod1 =⇔≡ rr La π

Thus “finding the order of a mod L” is equivalent to 
“finding the order of π (1)”



Order of a modulo L
Example
L = 15, a = 7

y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
π (y) 0 7 14 6 13 5 12 4 11 3 10 2 9 1 8

1 7 4 13π1(1) π2(1) π2(1)

π4(1)

5)50,15gcd(5017
3)48,15gcd(4817

2/4

2/4

=→=+
=→=−

Succeed!



Order of a modulo L
Example
L = 15, a = 11

y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
π (y) 0 11 7 3 14 10 6 2 13 9 5 1 12 8 4

1 11π1(1)

π2(1)

3)12,15gcd(12111
5)10,15gcd(10111

2/2

2/2

=→=+
=→=−

Succeed!



Factoring algorithm
The algorithm fails when L is ...

1. even
2. a prime number
3. a prime power

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30
Those can be checked efficiently by classical methods 
before we run the algorithm



Flowchart
Choose a randomly

gcd(L, a)=1

Find r of a mod L
YES

Compute gcd(L, ar/2±1)
YES

Factorization done!!

NO

r = evenNO

Nontrivial

YES

NO

1 < a < L−1



Order finding for factoring

H⊗n QFT
Π1

n⊗0

1

n2

)(mod
)1(11

Lax
xx

x

x

=

=Π π

Nothing changes...
We have only to replace π (y)
by ay (mod L) with y = 1



Remaining issues

Now is the time to answer those questions!

The measurement does not give us r itself, 
then how to obtain r out of the 
measurement result?
What if r does not divide N?
How to construct the Π1 gate?
If it remains a black box, how can the 
algorithm be useful?
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Continued fractions algorithm
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Continued fractions algorithm
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better and better 
approximations of α



Continued fractions algorithm
Given the continued fraction expansion

],,,[ 10 maaa L=α
Then the nth convergent of α is given by 
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with

n −2 −1 0 1 2 3 4
an − − 2 2 1 1 2
pn 0 1
qn 1 0 135321

3112752

It can be shown that pn and qn are co-prime



Continued fractions algorithm
Suppose k/r is a rational number such that
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Then k/r is a convergent of the continued 
fraction for ϕ
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The inequality holds if ϕ is an approximation of 
k/r accurate to 2l + 1 bits



Case study: Factoring 39
Step 1: Choose random a coprime to L

7=a

Step 2: Find r
Continued fractions algorithm 
after measurement12=r

Step 3: Compute gcd(L, ar/2±1)

13)26,39gcd()39(mod2617
3)24,39gcd()39(mod2417

2/12

2/12

=→≡+
=→≡−



Determining r after measurement
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Determining r after measurement
n −2 −1 0 1 2 3 4 5
an − − 0 2 2 2 170 4
pn 0 1
qn 1 0

0 1 2 5 852 3413
1 2 5 12 2045 8192

8192
3413

2045
852
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39=≤ LrCandidates for k/r
Compute
Know that q3 = 12 is the order

)(mod La nq



Remaining issues

Now is the time to answer those questions!

The measurement does not give us r itself, 
then how to obtain r out of the 
measurement result?
What if r does not divide N?
How to construct the Π1 gate?
If it remains a black box, how can the 
algorithm be useful?



Π1 gate
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Modular exponentiation

0x
1x
2x

1−nx
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M

L1 a a2 a4 12 −n

a
22 −n

a

We must at least calculate                    classically 
by repeated squaring
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aa 222 )(
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The circuit is constructed without knowing 
the order itself



Case study: Factoring 15
Step 1: Choose random a coprime to L

7=a

Concrete construction of Π gate 
due to Vandersypen et al. will be 
given in the following slides

Step 2: Find r
4=r

Step 3: Compute gcd(L, ar/2±1)

5)50,15gcd(5017
3)48,15gcd(4817

2/4

2/4

=→=+
=→=−



Finding r of a modulo 15

a a2 a4

4 1
1
1
1
1
1

1
4
4
1
4

r
2 4
4 2
7 4
8 4

11 2
13 4

a2 a4a

)(mod22 Lyaya
kk

=

0x
1x
2x

0
0
0
1

Only needed when 
a = 2, 7, 8, 13

Trivial

In reality, if r = 2k, a quantum computer is not 
necessary (Know r during repeated squaring)



Modular exponentiation
Example: a = 7

)15(mod1)1214(
)15(mod1)1(

)15(mod

+⋅+⋅=
+−= a

a

0123 248 yyyyy +++=

a0001
0123

=
yyyy

0111

0
0
0
1

0
1
1
1

For other a, the gate is constructed 
in a similar fashion



Modular exponentiation
Example: a = 7 (and 2, 8, 13)
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Quantum circuit for factoring 15

H

H

H

H S T

H S

H

Modular exponentiation

QFT

0

0

0

0

0

0

1



Where are we now?
Climbing Mt. Quantum Computation

Scalable Quantum 
Computer

Theory of fault 
tolerant QC

Decoherence
How can we go 

beyond?

We are still at the foot of the mountain…



Thank you for your attention!!
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