Shor's Factoring Algorithm

School on Quantum Computing @Yagami Day 2, Lesson 2 10:30-11:30, March 23, 2005 Eisuke Abe

Department of Applied Physics and Physico-Informatics, and CREST-JST, Keio University

Outline

Number theory for factoring

- Greatest common deviser and Euclidian method
- Chinese remainder theorem
- Quadratic equation for factoring
- Order of *a* modulo *L*
- Factoring algorithm
 - Reduction to order finding
 - Continued fractions algorithm
 - Modular exponentiation

The inventor

© Aya Furuta

Number theory for factoring

<u>Purpose</u>

To reduce factoring to order finding

- Greatest common divisor and Euclidian method
- 2. Chinese remainder theorem
- 3. Quadratic equation for factoring
- 4. Order of *a* modulo *L*

Greatest common divisor

Definition

The largest integer which is a divisor of two integers a and b is called "greatest common divisor of a and b", and denoted as

If gcd(a, b) is equal to 1, it is said that "a and b are co-prime"

<u>Example</u>

$$gcd(9,6) = 3$$
 $gcd(5,3) = 1$

Euclidian method

An efficient method for finding the gcd

<u>Example</u>

$$gcd(494, 133) = 19$$

Filling the floor of a rectangular room with square tiles 494

 $494 = 133 \times 3 + 95$ $133 = 95 \times 1 + 38$ $95 = 38 \times 2 + 19$ $38 = 19 \times 2$ 95

19

38

Chinese remainder theorem

(Below n_1 , n_2 , s, t, L ... are all positive integers)

Let n_1 and n_2 be co-prime, *i.e.*,

 $gcd(n_1, n_2) = 1$

p and *q* are the remainders of n_1 and n_2 , respectively, *i.e.*,

$$0 \le p \le n_1 - 1$$
$$0 \le q \le n_2 - 1$$

Then there exists a unique $s (1 \le s \le n_1 n_2)$ that satisfies $s \equiv p \pmod{n_1}$

$$s \equiv q \pmod{n_2}$$

Chinese remainder theorem

Proof of uniqueness

Then

Suppose there exists $t (1 \le t \le n_1 n_2, t < s)$ that satisfies

$$t \equiv p \pmod{n_1}$$

$$t \equiv q \pmod{n_2}$$

$$gcd(9,15) \neq 1$$

$$45 \equiv 0 \pmod{9}$$

$$45 \equiv 0 \pmod{15}$$

 $45 \neq 0 \pmod{135}$

 $s-t \equiv 0 \pmod{n_1} \implies s-t \equiv 0 \pmod{n_1 n_2}$ $\Rightarrow s-t \equiv 0 \pmod{n_1 n_2}$ $\gcd(n_1, n_2) = 1$

This means $s - t \ge n_1 n_2$, which contradicts the assumption $1 \le t < s \le n_1 n_2$

Chinese remainder theorem

Proof of existence

There are n_1n_2 possible pairs of p and q, and that $s (1 \le s \le n_1n_2)$ is unique Thus there must exist s for any pair of p and q

(Q.E.D)

Example

$$n_1 = 3, n_2 = 5$$

S	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
p	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0
q	1	2	3	4	0	1	2	3	4	0	1	2	3	4	0

Consider the quadratic equation

$$x^2 \equiv 1 \pmod{L} \qquad \dots(1)$$

Here $L = n_1 n_2$ with $gcd(n_1, n_2) = 1$

Then there exist *nontrivial solutions* such that

$$x \equiv \pm s \pmod{L}$$

Here *s* is in the range 1 < s < L - 1, and the gcd of *L* and $s \pm 1$ gives a nontrivial factor of *L*

Trivial solutions

 $x = \pm 1 \pmod{L}$ Thus 1, L - 1, L are excluded as candidates for nontrivial solutions

<u>Proof</u>

Chinese remainder theorem assures there exists s (1 < s < L - 1) that satisfies

$$s \equiv 1 \pmod{n_1}$$
$$s \equiv -1 \pmod{n_2}$$

$$s^{2} - 1 \equiv 0 \pmod{n_{1}}$$
$$s^{2} - 1 \equiv 0 \pmod{n_{2}}$$

$$s = 1 \Longrightarrow \begin{cases} s \equiv 1 \pmod{n_1} \\ s \equiv 1 \pmod{n_2} \\ s \equiv L - 1 \Longrightarrow \begin{cases} s \equiv -1 \pmod{n_1} \\ s \equiv -1 \pmod{n_1} \\ s \equiv -1 \pmod{n_2} \end{cases}$$
$$s = L \Longrightarrow \begin{cases} s \equiv 0 \pmod{n_1} \\ s \equiv 0 \pmod{n_1} \\ s \equiv 0 \pmod{n_2} \end{cases}$$

$$\Rightarrow s^2 - 1 \equiv 0 \pmod{L}$$

$$gcd(n_1, n_2) = 1$$

Proof (cont'd)

Therefore,

$$(s+1)(s-1) \equiv 0 \pmod{L}$$

On the other hand,

$$0 < s - 1 < s + 1 < L$$
 $1 < s < L - 1$

Hence the gcd of *L* and $s \pm 1$ is a nontrivial factor of *L*, and much the same argument holds for

$$s \equiv -1 \pmod{n_1}$$
$$s \equiv 1 \pmod{n_2} \qquad (Q.E.D)$$

Example

$$n_1 = 3, n_2 = 5$$

Trivial solutions

S	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
p	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0
q	1	2	3	4	0	1	2	3	4	0	1	2	3	4	0

Nontrivial solutions

Order of a modulo L

Definition

The least positive integer r that satisfies

 $a^r \equiv 1 \pmod{L}$

a is in the range $0 \le a \le L - 1$, and co-prime to *L*

Solving Eq. (1) Find r, and if r is even, set $x^2 \equiv 1 \pmod{L}$

 $s \equiv a^{r/2} \pmod{L}$

If we are lucky, this is a nontrivial solution to Eq. (1), and we can factor L!

Order of *a* modulo L = 15

Factoring 15

a	r	$a^{r/2} \pm 1$	gcd w/ 15	
2	4	3, 5	3, 5	$2^4 = 16 \equiv 1$
4	2	3, 5	3, 5	$4^2 = 16 \equiv 1$
7	4	48, 50	3, 5	$7^4 = (49)^2 \equiv 4^2 \equiv 1$
8	4	63, 65	3, 5	$8^4 \equiv (-7)^4 \equiv 1$
11	2	10, 15	5, 3	$11^2 \equiv (-4)^2 \equiv 1$
13	4	168, 170	3, 5	$13^4 \equiv (-2)^4 \equiv 1$

We already know "14" yields a trivial solution, so, may well set the range of *a* as 1 < a < 14

Order of $a \mod L = 21$

Factoring 21

				l
a	r	$a^{r/2} \pm 1$	gcd w/ 21	
2	6	7, 9	7, 3	
4	3			Odd r
5	6	124, 126	19, 21	Trivial solution
8	2	7, 9	7, 3	
10	6	999, 1001	3, 7	
11	6	1330, 1332	7, 3	
13	2	12, 14	3, 7	
16	3			Odd r
17	6	4912, 4914	19, 21	Trivial solution
19	6	6858, 6860	3, 7	

"ay modulo L" is a permutation

Define $\pi(y)$ **as** $ay \pmod{L}$ Example gcd(L, a) = 1

$$L = 15, a = 7$$

У	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$\pi(y)$	0	7	14	6	13	5	12	4	11	3	10	2	9	1	8

 $7 \times 0 \pmod{15} = 0$

$$7 \times 1 \pmod{15} = 7$$

 $7 \times 2 \pmod{15} = 14$

 $7 \times 3 \pmod{15} = 6$

 $11 \times 0 \pmod{15} = 0$

$$11 \times 1 \pmod{15} = 11$$

$$11 \times 3 \pmod{15} = 3$$

L = 15, a = 11

У	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$\pi(y)$	0	11	7	3	14	10	6	2	13	9	5	1	12	8	4

Reduction to order finding

Now we can identify "ay mod L" as "permutation" $\pi(y) \Leftrightarrow ay \pmod{L}$

For instance,

$$\pi^{3}(y) \Leftrightarrow a(a(ay)) \pmod{L}$$
$$\Leftrightarrow a^{3}y \pmod{L}$$

Thus "finding the order of *a* mod *L*" is equivalent to "finding the order of $\pi(1)$ "

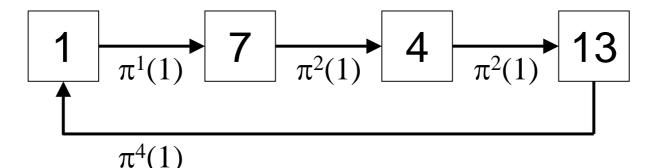
$$a^r \equiv 1 \pmod{L} \Leftrightarrow \pi^r(1) = 1$$

Order of a modulo L

Example

L = 15, a = 7

Γ	У	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	$\pi(y)$	0	7	14	6	13	5	12	4	11	3	10	2	9	1	8



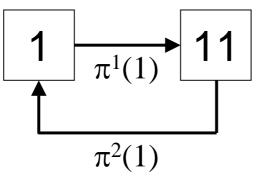
 $7^{4/2} - 1 = 48 \rightarrow gcd(15, 48) = 3$ $7^{4/2} + 1 = 50 \rightarrow gcd(15, 50) = 5$ Succeed!

Order of a modulo L

Example

L = 15, a = 11

У	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$\pi(y)$	0	11	7	3	14	10	6	2	13	9	5	1	12	8	4

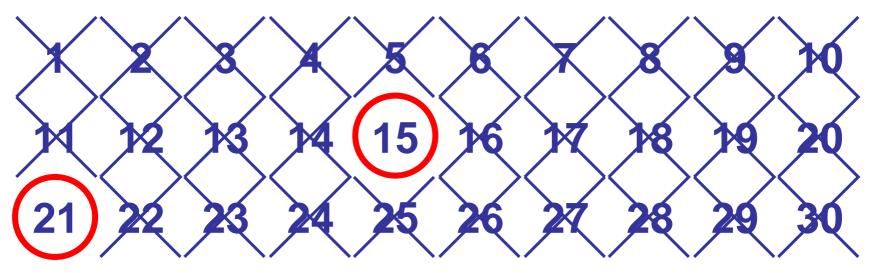


 $11^{2/2} - 1 = 10 \rightarrow \text{gcd}(15, 10) = 5$ $11^{2/2} + 1 = 12 \rightarrow \text{gcd}(15, 12) = 3$ Succeed!

Factoring algorithm

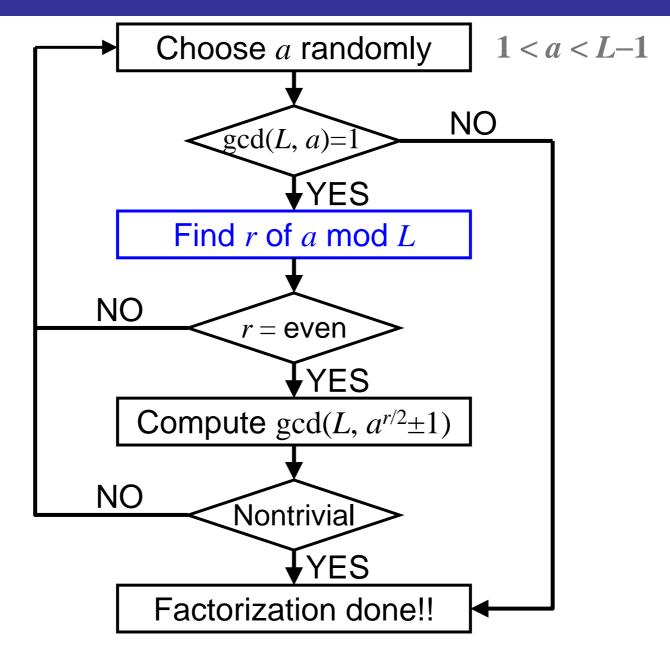
The algorithm *fails* when *L* is ...

- 1. even
- 2. a prime number
- 3. a prime power

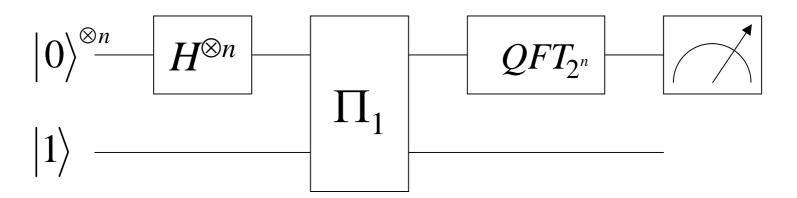


Those can be checked efficiently by classical methods before we run the algorithm

Flowchart



Order finding for factoring



$$\Pi_{1} |x\rangle |1\rangle = |x\rangle |\pi^{x}(1)\rangle$$
$$= |x\rangle |a^{x} (\operatorname{mod} L)\rangle$$

Nothing changes... We have only to replace $\pi(y)$ by $ay \pmod{L}$ with y = 1

Remaining issues

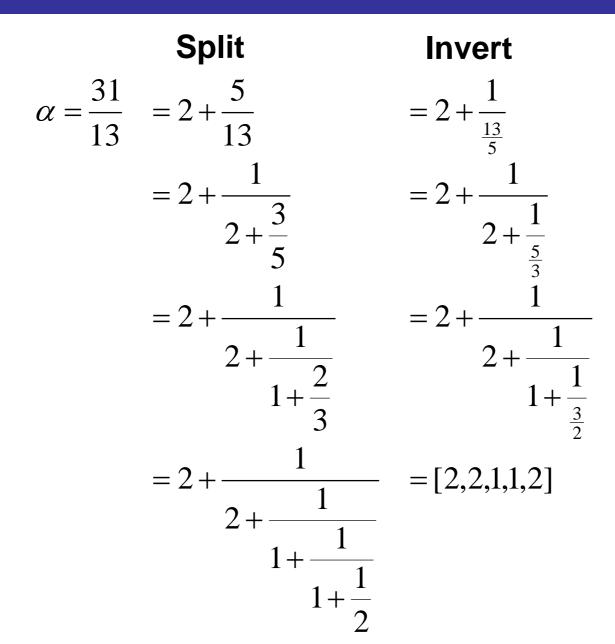
Now is the time to answer those questions!

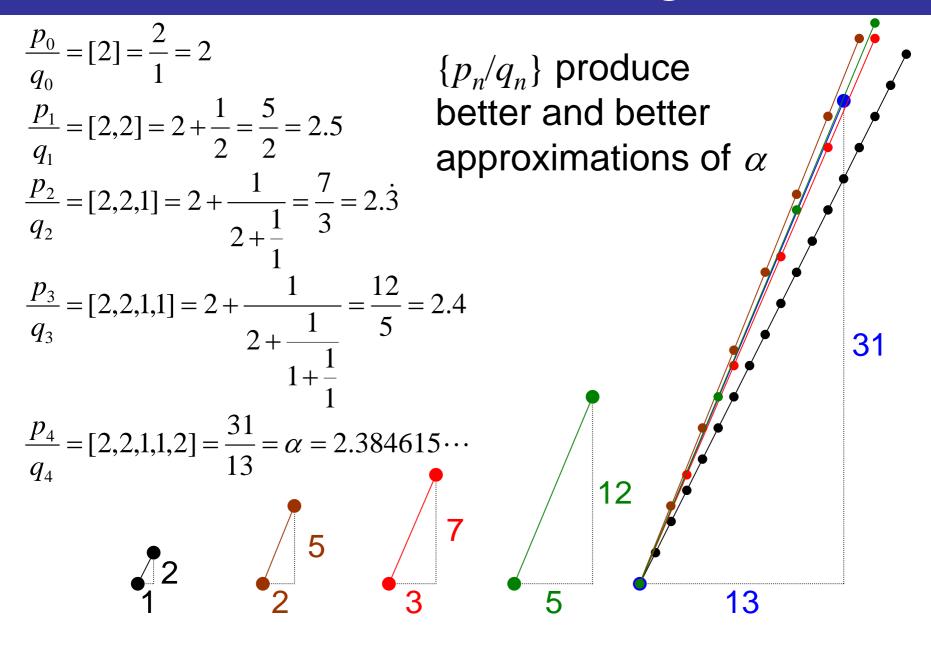
- The measurement does not give us r itself, then how to obtain r out of the measurement result?
- What if *r* does not divide *N*?
- How to construct the Π_1 gate?
- If it remains a black box, how can the algorithm be useful?

Remaining issues

Now is the time to answer those questions!

- The measurement does not give us r itself, then how to obtain r out of the measurement result?
- What if *r* does not divide *N*?
- How to construct the Π_1 gate?
- If it remains a black box, how can the algorithm be useful?





Given the continued fraction expansion

$$\alpha = [a_0, a_1, \cdots, a_m]$$

Then the *n*th convergent of α is given by

$$p_{n} = a_{n}p_{n-1} + p_{n-2} \qquad \text{with} \qquad (p_{-2}, q_{-2}) = (0,1) q_{n} = a_{n}q_{n-1} + q_{n-2} \qquad \text{with} \qquad (p_{-1}, q_{-1}) = (1,0)$$

n	-2	-1	0	1	2	3	4
a_n	_	-	2	2	1	1	2
p_n	0	1	2	5	7	12	31
q_n	1	0	1	2	3	5	13

It can be shown that p_n and q_n are co-prime

Suppose k/r is a rational number such that

$$\left|\frac{k}{r} - \varphi\right| \le \frac{1}{2r^2}$$

Then k/r is a convergent of the continued fraction for φ

The inequality holds if φ is an approximation of k/r accurate to 2l + 1 bits

$$\left| \frac{k}{r} - \varphi \right| \le \frac{1}{2^{2l+1}} \le \frac{1}{2r^2} \qquad l \equiv \lceil \log_2 L \rceil \quad (2^{l-1} < L \le 2^l) \\ 2^{2l+1} = 2(2^l)^2 \ge 2L^2 \ge 2r^2$$

Case study: Factoring 39

Step 1: Choose random *a* coprime to *L*

a = 7

Step 2: Find rContinued fractions algorithmr = 12Continued fractions algorithm

Step 3: Compute $gcd(L, a^{r/2} \pm 1)$

$$7^{12/2} - 1 \equiv 24 \pmod{39} \rightarrow \gcd(39, 24) = 3$$

 $7^{12/2} + 1 \equiv 26 \pmod{39} \rightarrow \gcd(39, 26) = 13$

Determining r after measurement

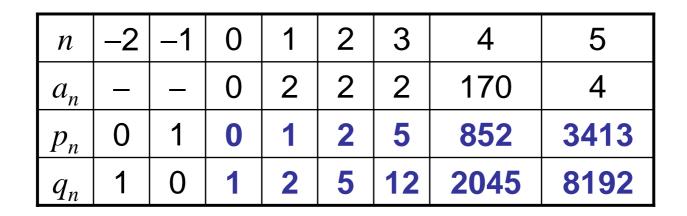
$$\approx \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{2\pi i m k/r} \left| \frac{N}{r} k \right\rangle \quad \xrightarrow{\qquad } \quad \left| \lambda \right\rangle \approx \left| \frac{N}{r} k \right\rangle$$

Example

$L = 39$ $\frac{3413}{1} = 0 + \frac{1}{1}$	
$a = 7 \qquad \qquad 8192 \qquad 0 + \frac{1}{2 + \frac{1}{1}}$	
λk 2+ $\frac{1}{2}$	
$r = 12 \qquad \qquad \boxed{N \approx r} \qquad 2 + \frac{1}{2}$	1
$l = \lceil \log_2 L \rceil = 6 $ 170-	$+\frac{1}{\Lambda}$
$N = 2^{2l+1} = 8192 \qquad = [0, 2, 2, 2, 170, 4]$	' †

k = 5 $\lambda = 3413 \qquad \frac{Nk}{r} = \frac{8192 \cdot 5}{12} = 3413.\dot{3}$

Determining r after measurement



$$\frac{p_1}{q_1} = \frac{1}{2} \quad \frac{p_2}{q_2} = \frac{2}{5} \quad \frac{p_3}{q_3} = \frac{5}{12} \quad \frac{p_4}{q_4} = \frac{852}{2045} \quad \frac{p_5}{q_5} = \frac{3413}{8192}$$

Candidates for k/r $r \le L = 39$ Compute $a^{q_n} \pmod{L}$ Know that $q_3 = 12$ is the order

Remaining issues

Now is the time to answer those questions!

- The measurement does not give us r itself, then how to obtain r out of the measurement result?
- What if *r* does not divide *N*?
- How to construct the Π_1 gate?
- If it remains a black box, how can the algorithm be useful?

$$\Pi_{1} \text{ gate}$$

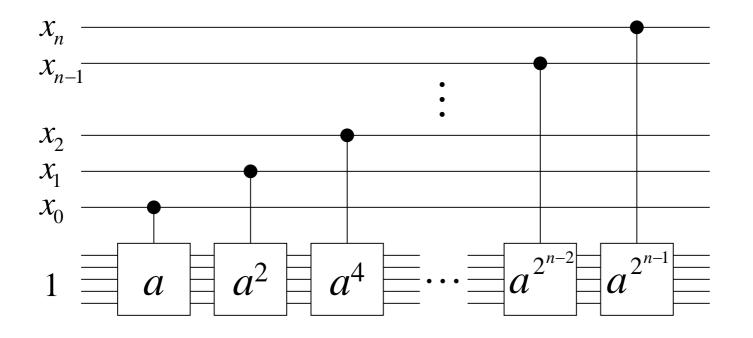
$$\Pi_{1} |x\rangle |1\rangle = |x\rangle |a^{x} \pmod{L}\rangle$$

$$x = 2^{n-1}x_{n} + 2^{n-2}x_{n-1} + \dots + 2x_{1} + x_{0}$$

$$a^{x} \pmod{L} = a^{2^{n-1}x_{n} + 2^{n-2}x_{n-1} + \dots + 2x_{1} + x_{0}} \pmod{L}$$

$$= [a^{2^{n-1}} \pmod{L}]^{x_{n}} [a^{2^{n-2}} \pmod{L}]^{x_{n-1}} \cdots [a \pmod{L}]^{x_{0}}$$
Controlled-U gates
$$|y\rangle = a^{2^{k}} |ya^{2^{k}} \pmod{L}\rangle$$

Modular exponentiation



We must at least calculate $a^{2^k} \pmod{L}$ classically by repeated squaring $(a^{2^{k-1}})^2 = a^{2^k}$

The circuit is constructed without knowing the order itself

Case study: Factoring 15

Step 1: Choose random *a* coprime to *L*

a = 7

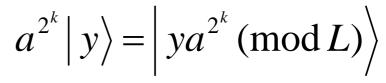
Step 2: Find rr = 4 Concrete construction of Π gate due to Vandersypen *et al*. will be given in the following slides

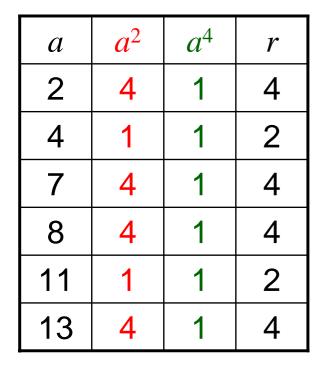
Step 3: Compute $gcd(L, a^{r/2} \pm 1)$

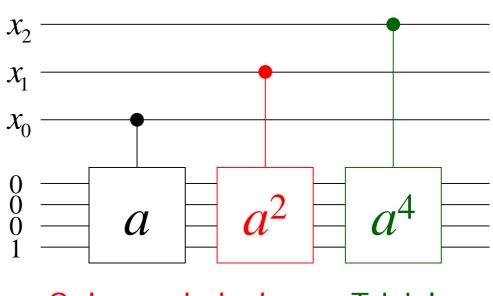
$$7^{4/2} - 1 = 48 \rightarrow gcd(15, 48) = 3$$

 $7^{4/2} + 1 = 50 \rightarrow gcd(15, 50) = 5$

Finding r of a modulo 15







Only needed when Trivial a = 2, 7, 8, 13

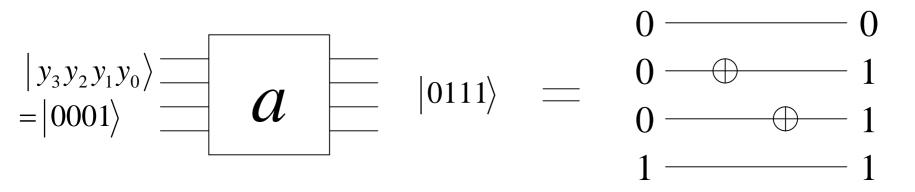
In reality, if $r = 2^k$, a quantum computer is not necessary (Know r during repeated squaring)

Modular exponentiation

Example: a = 7

- *a* (mod 15)
- $= (a-1)+1 \pmod{15}$
- $= (4 \cdot 1 + 2 \cdot 1) + 1 \pmod{15}$

$$y = 8y_3 + 4y_2 + 2y_1 + y_0$$



For other *a*, the gate is constructed in a similar fashion

Modular exponentiation

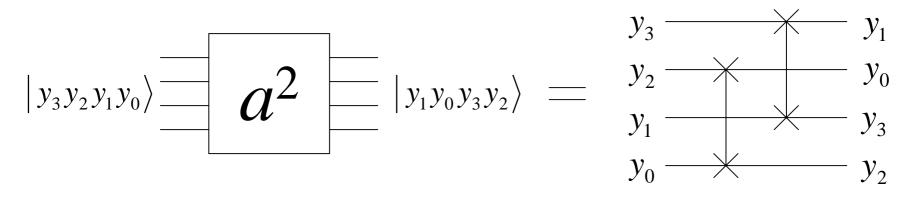
Example: *a* = 7 (and 2, 8, 13)

$a^2y \pmod{15}$

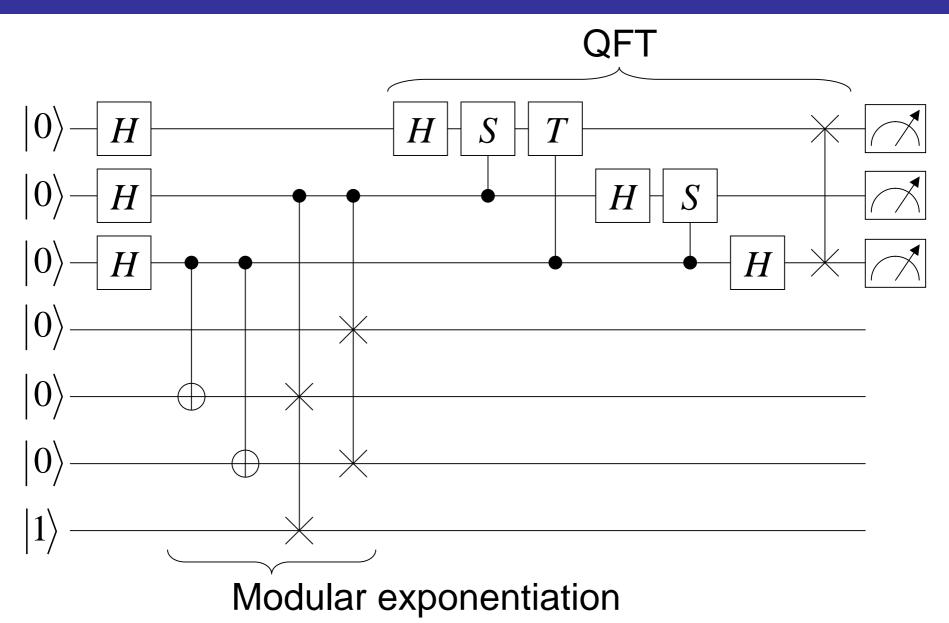
- $= 4 \times (8y_3 + 4y_2 + 2y_1 + y_0) \pmod{15}$
- $= 32y_3 + 16y_2 + 8y_1 + 4y_0 \pmod{15}$
- $= 2y_3 + y_2 + 8y_1 + 4y_0 \pmod{15}$

- $a^2 = 4 \pmod{15}$ $32 = 2 \pmod{15}$
- $16 = 1 \pmod{15}$

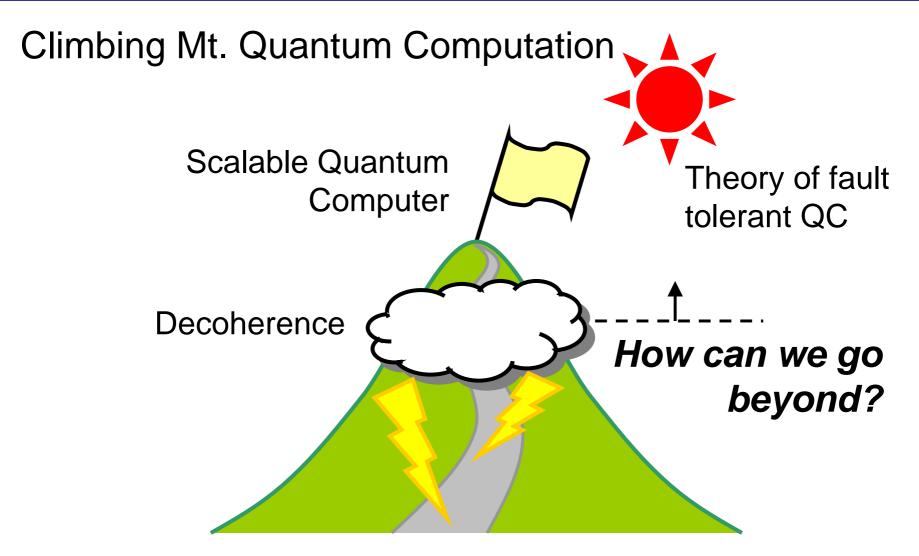
 $= 8y_1 + 4y_0 + 2y_3 + y_2 \pmod{15}$



Quantum circuit for factoring 15



Where are we now?



We are still at the foot of the mountain...

Thank you for your attention!!