Deutsch-Jozsa Algorithm

School on Quantum Computing @Yagami
Day 1, Lesson 3

13:00-14:00, March 22, 2005

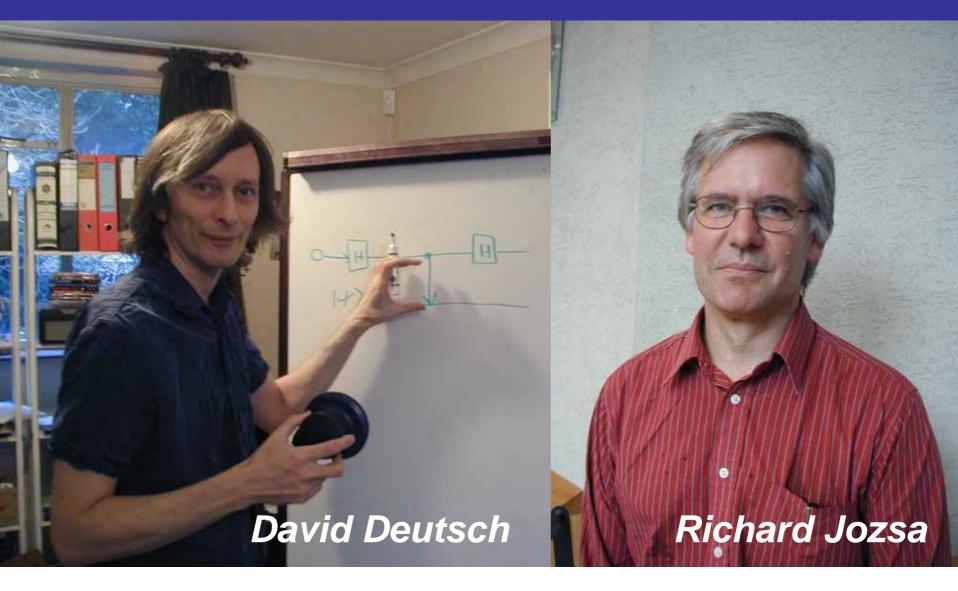
Eisuke Abe

Department of Applied Physics and Physico-Informatics, and CREST-JST, Keio University

Outline

- Ideas for quantum algorithm
 - Quantum parallelism
- Deutsch-Jozsa algorithm
 - Deutsch's problem
 - Implementation of DJ algrorithm
 - Examples
 - 1-bit
 - 2-bit (as a quiz)
 - 3-bit

The inventors



© Aya Furuta

Hadamard on *n* qubits

$$|0\rangle \longrightarrow H \longrightarrow = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$= \frac{1}{2} (|0\rangle + |1\rangle + |10\rangle + |11\rangle)$$

$$= \frac{1}{2} (|0\rangle + |1\rangle + |2\rangle + |3\rangle) = \frac{1}{2} \sum_{x=0}^{3} |x\rangle$$

$$n \text{ qubits}$$

$$|0\rangle \longrightarrow H \longrightarrow = \frac{1}{2} (|0\rangle + |1\rangle + |11\rangle)$$

$$= \frac{1}{2} (|0\rangle + |1\rangle + |2\rangle + |3\rangle) = \frac{1}{2} \sum_{x=0}^{3} |x\rangle$$

$$x = x_1 x_2 \cdots x_n \text{ with } x_i = 0,1$$

$$5 = 101 = 2^2 \times 1 + 2^1 \times 0 + 2^0 \times 1$$

$$\vdots$$

$$|0\rangle \longrightarrow H \longrightarrow = \frac{1}{2^{n/2}} \sum_{x=0}^{2^{n}-1} |x\rangle$$

$$\vdots$$

$$|0\rangle \longrightarrow H \longrightarrow = \frac{1}{2^{n/2}} \sum_{x=0}^{2^{n}-1} |x\rangle$$

$$|0\rangle \longrightarrow H \longrightarrow = \frac{1}{2^{n/2}} \sum_{x=0}^{2^{n}-1} |x\rangle$$

Hadamard on *n* qubits

$$|x\rangle \frac{n}{H^{\otimes n}} \frac{1}{2^{n/2}} \sum_{z} (-1)^{x \cdot z} |z\rangle$$

$$H^{\otimes n} |x_1\rangle |x_2\rangle \cdots |x_n\rangle$$

$$= \frac{1}{2^{n/2}} \left(\sum_{z_1} (-1)^{x_1 \cdot z_1} |z_1\rangle \right) \cdots \left(\sum_{z_n} (-1)^{x_n \cdot z_n} |z_n\rangle \right)$$

$$= \frac{1}{2^{n/2}} \sum_{z_1, z_2 \cdots z_n} (-1)^{x_1 \cdot z_1} (-1)^{x_2 \cdot z_2} \cdots (-1)^{x_n \cdot z_n} |z_1 z_2 \cdots z_n\rangle$$

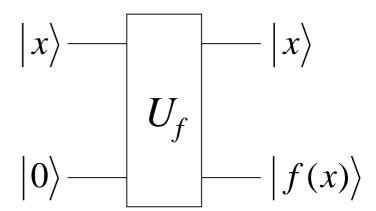
$$= \frac{1}{2^{n/2}} \sum_{z_1} (-1)^{x \cdot z_1} |z\rangle$$

$$= \frac{1}{2^{n/2}} \sum_{z_1} (-1)^{x \cdot z_1} |z\rangle$$
Bitwise inner product of x and z modulo 2

Quantum parallelism

Suppose we are given a quantum gate U_f

$$U_f |x\rangle |y\rangle = |x\rangle |y \oplus f(x)\rangle$$



where f(x) is a binary function

Remarkably, for proper inputs, we can encode all the information on f(x) by applying U_f only once

$$\frac{1}{2^{n/2}} \sum_{x=0}^{2^{n}-1} |x\rangle |0\rangle \xrightarrow{f} \frac{1}{2^{n/2}} \sum_{x=0}^{2^{n}-1} |x\rangle |f(x)\rangle$$
Entangled

Quantum parallelism

$$U_{f} \xrightarrow{\frac{1}{2} (|0\rangle + |1\rangle + |2\rangle + |3\rangle) |0\rangle} U_{f} \xrightarrow{[0\rangle f(0)\rangle + |1\rangle |f(1)\rangle + |2\rangle |f(2)\rangle + |3\rangle |f(3)\rangle}$$

Is this useful?

The answer is **NO**, because we must observe the state to extract information out of it, which prevents us from enjoying the full power of quantum entanglement and quantum parallelism

Quantum interference is the key

Deutsch's problem

Definition

A binary function f(x) is called **constant** if it outputs only 0, or only 1, for all values of x

A binary function f(x) is called **balanced** if it outputs 0 for half of all the possible x, and 1 for the other half

Constant

X	f(x)
0	0
1	0
2	0
3	0

Balanced

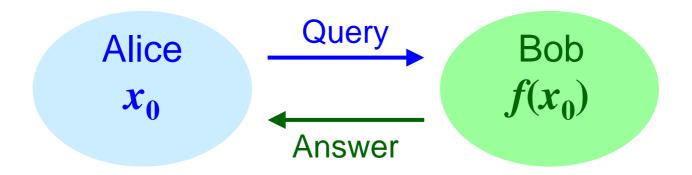
\mathcal{X}	f(x)
0	0
1	0
2	1
3	1

Neither C or B

X	f(x)
0	0
1	0
2	0
3	1

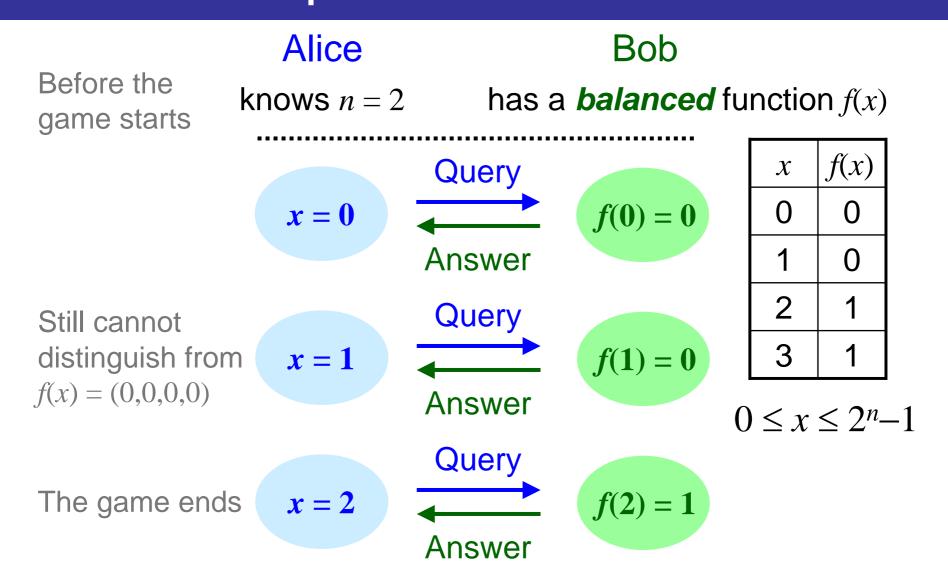
Deutsch's problem

Constant or balanced, that is the problem



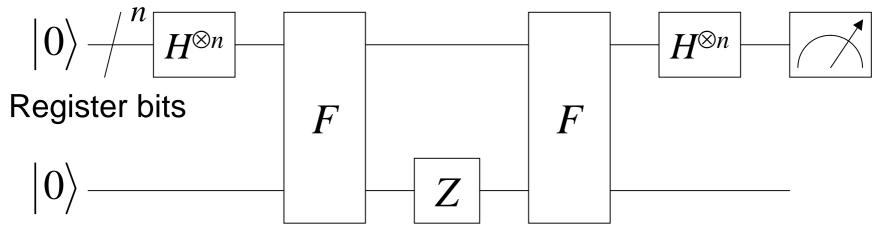
How many times does Alice have to query Bob to determine the type of his function?

Deutsch's problem: Classical case



The worst case requires $2^{n/2}+1$ queries

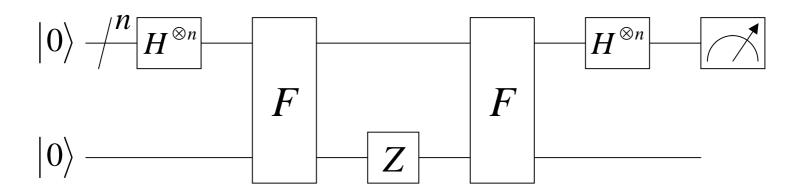
Quantum circuit for DJ



Work bit

$$H^{\otimes n} |x\rangle = \frac{1}{2^{n/2}} \sum_{z} (-1)^{x \cdot z} |z\rangle \quad F|x\rangle |w\rangle = |x\rangle |w \oplus f(x)\rangle$$

$$x \cdot z \equiv x_1 \cdot z_1 + x_2 \cdot z_2 + \dots + x_n \cdot z_n \qquad Z|w\rangle = (-1)^w |w\rangle$$

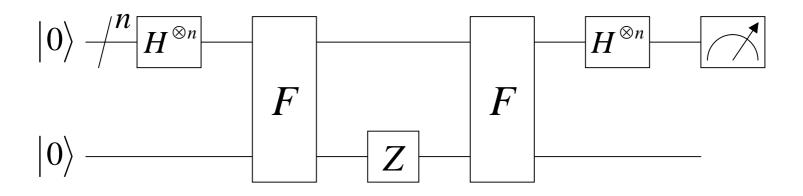


$$|0\rangle^{\otimes n}|0\rangle \xrightarrow{H^{\otimes n}} \frac{1}{2^{n/2}} \sum_{x} |x\rangle|0\rangle$$

Create a linear superposition state

$$\xrightarrow{F} \frac{1}{2^{n/2}} \sum_{x} |x\rangle |f(x)\rangle$$

Encode information on f(x) into the work bit

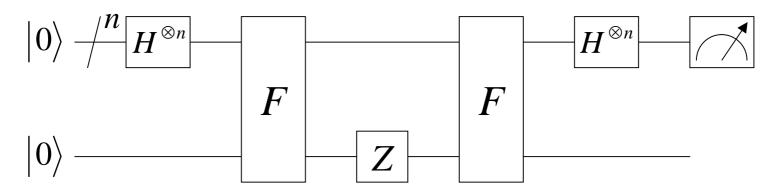


$$\frac{1}{2^{n/2}} \sum_{x} |x\rangle |f(x)\rangle \xrightarrow{Z} \frac{1}{2^{n/2}} \sum_{x} (-1)^{f(x)} |x\rangle |f(x)\rangle$$

Add nonlocal phase shifts which carry information on f(x)

$$\xrightarrow{F} \frac{1}{2^{n/2}} \sum_{x} (-1)^{f(x)} |x\rangle |0\rangle$$

Erase information on f(x) from the work bit

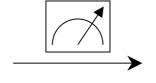


$$\frac{1}{2^{n/2}} \sum_{x} (-1)^{f(x)} |x\rangle |0\rangle \xrightarrow{H^{\otimes n}} \sum_{z} \sum_{x} \frac{(-1)^{f(x)+x\cdot z}}{2^n} |$$

$$H^{\otimes n} |x\rangle = \frac{1}{2^{n/2}} \sum_{z} (-1)^{x \cdot z} |z\rangle$$

$$\sum_{z} \sum_{x} \frac{(-1)^{f(x)+x\cdot z}}{2^{n}} |z\rangle |0\rangle$$

Probability amplitude for the state $|z\rangle$



Get z = 0 if and only if f is a constant function

Probability amplitude for the state $|0\rangle^{\otimes n}$

$$\sum_{x} \frac{(-1)^{f(x)}}{2^{n}} = \begin{cases} \pm 1 & \text{(constant)} \\ 0 & \text{(balanced)} \end{cases}$$
 Only the constant functions bring the register back to the initial state

n=2, constant case

Constructive interference

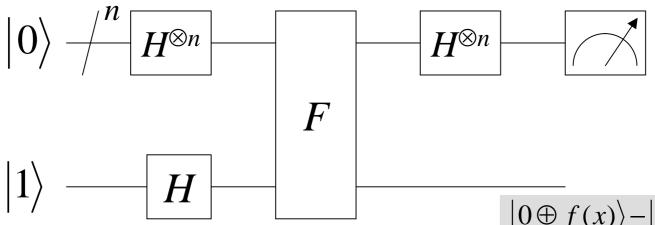
$$\sum_{x=0}^{3} \frac{(-1)^{f(x)}}{2^2} = \frac{(-1)^0 + (-1)^0 + (-1)^0 + (-1)^0}{4} = 1$$

n=2, balanced case

Destructive interference

$$\sum_{x=0}^{3} \frac{(-1)^{f(x)}}{2^2} = \frac{(-1)^0 + (-1)^1 + (-1)^0 + (-1)^1}{4} = 0$$

Revised version



A clever choice of the work bit simplifies the circuit

$$\begin{vmatrix} 0 \oplus f(x) \rangle - |1 \oplus f(x) \rangle \\ = \begin{cases} |0\rangle - |1\rangle & \text{if } f(x) = 0\\ |1\rangle - |0\rangle & \text{if } f(x) = 1\\ = (-1)^{f(x)} (|0\rangle - |1\rangle) \end{cases}$$

$$|0\rangle^{\otimes n}|1\rangle \xrightarrow{\boldsymbol{H}^{\otimes n+1}} \frac{1}{2^{n/2}} \sum_{x} |x\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \xrightarrow{\boldsymbol{F}} \frac{1}{2^{n/2}} \sum_{x} (-1)^{f(x)} |x\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$

$$\xrightarrow{H^{\otimes n}} \frac{1}{2^n} \sum_{x,z} (-1)^{f(x)+x\cdot z} |z\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right]$$

State after the $2^{nd} F$ gate

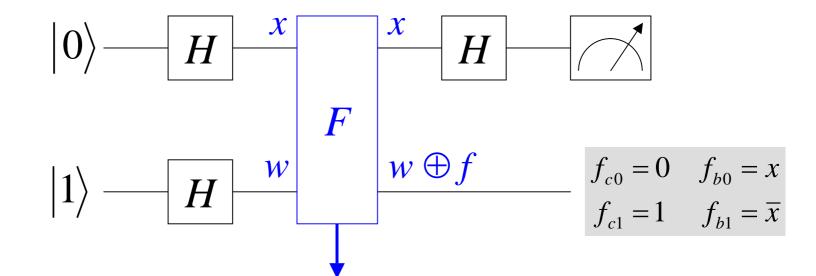
1-bit f(x)

34	Cons	stant	Balanced		
X	f_{c0}	f_{c1}	f_{b0}	f_{b1}	
0	0	1	0	1	
1	0	0 1		0	

$$f_{c0}(x) = 0$$
 $f_{b0}(x) = x$
 $f_{c1}(x) = 1$ $f_{b1}(x) = \overline{x}$

What is the explicit quantum circuit for the F gate?

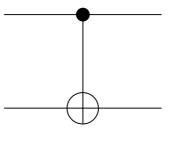
1-bit F gate



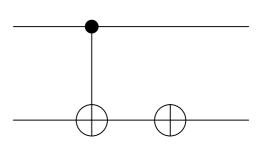
$$w \oplus f_{c0} = w$$

$$w \oplus f_{c1} = \overline{w}$$

Balanced



$$w \oplus f_{b0} = w \oplus x$$



$$w \oplus f_{c0} = w$$
 $w \oplus f_{c1} = \overline{w}$ $w \oplus f_{b0} = w \oplus x$ $w \oplus f_{b1} = w \oplus x \oplus 1$

1-bit DJ: Constant f_{c0}

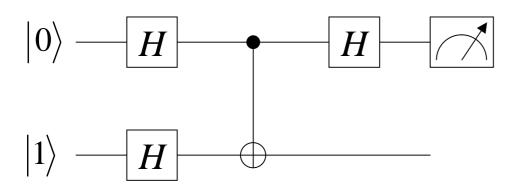
$$|1\rangle$$
 — H

$$HH|0\rangle = \frac{1}{2}(|0\rangle + |1\rangle + |0\rangle - |1\rangle) = |0\rangle$$

Constructive interference

The initial state $|0\rangle$ "survives" due to the constructive interference, while the other state $|1\rangle$ is erased due to the destructive interference

1-bit DJ: Balanced f_{b0}



$$\begin{vmatrix} 0 \oplus x \rangle - |1 \oplus x \rangle \\ = \begin{cases} |0\rangle - |1\rangle & \text{if } x = 0 \\ |1\rangle - |0\rangle & \text{if } x = 1 \\ = (-1)^x (|0\rangle - |1\rangle) \end{cases}$$

$$|0\rangle|1\rangle \xrightarrow{H^{\otimes 2}} \frac{1}{\sqrt{2}} \sum_{x=0}^{1} |x\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \xrightarrow{C_{rw}} \frac{1}{\sqrt{2}} \sum_{x=0}^{1} (-1)^{x} |x\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$

Z gate on the register

$$|0\rangle$$
 — H — Z — H — Destructive interference $|1\rangle$ — $HZH|0\rangle = \frac{1}{2}(|1\rangle + |0\rangle + |1\rangle - |0\rangle) = |1\rangle$

2-bit f(x)

x ab	Constant		Balanced $\binom{4}{2} = 6$						
	ab	f_{c0}	f_{c1}	f_{b0}	f_{b1}	f_{b2}	f_{b3}	f_{b4}	f_{b5}
0	00	0	1	0	0	0	1	1	1
1	01	0	1	0	1	1	1	0	0
2	10	0	1	1	0	1	0	1	0
3	11	0	1	1	1	0	0	0	1

$$f_{c0}(x) = 0 f_{b0}(x) = a f_{b3}(x) = \overline{a}$$

$$f_{c1}(x) = 1 f_{b1}(x) = b f_{b4}(x) = \overline{b}$$

$$f_{b2}(x) = a \oplus b f_{b5}(x) = \overline{a \oplus b}$$

2-bit F gates can be constructed from only CNOT and NOT

3-bit balanced f(x)

$$f_{b0} = a$$

$$f_{b1} = a \oplus b$$

$$f_{b2} = a \oplus b \oplus c$$

$$f_{b3} = ab \oplus c$$

$$f_{b4} = ab \oplus a \oplus c$$

$$f_{b5} = ab \oplus a \oplus b \oplus c$$

$$f_{b6} = ab \oplus bc \oplus a$$

$$f_{b7} = ab \oplus bc \oplus a \oplus b$$

$$f_{b8} = ab \oplus bc \oplus ca$$

$$f_{b9} = ab \oplus bc \oplus ca \oplus a \oplus b$$

Number of balanced functions

$$_{8}C_{4}=70$$

3-bit *F* gates require not only CNOT but Toffoli

$$\begin{vmatrix} a \rangle & - & |a \rangle \\ |b \rangle & - & |b \rangle \\ |w \rangle & - & |w \oplus ab \rangle$$

3-bit balanced f(x)

X	abc	f_{b0}	f_{b1}	f_{b2}	f_{b3}	f_{b4}	f_{b5}	f_{b6}	f_{b7}	f_{b8}	f_{b9}
0	000	0	0	0	0	0	0	0	0	0	0
1	001	0	0	1	1	1	1	0	0	0	0
2	010	0	1	1	0	0	1	0	1	0	1
3	011	0	1	0	1	1	0	1	0	1	0
4	100	1	1	1	0	1	1	1	1	0	1
5	101	1	1	0	1	0	0	1	1	1	0
6	110	1	0	0	1	0	1	0	1	1	1
7	111	1	0	1	0	1	0	1	0	1	1
# of	f blcd fns	6	6	2	6	12	6	12	12	2	6

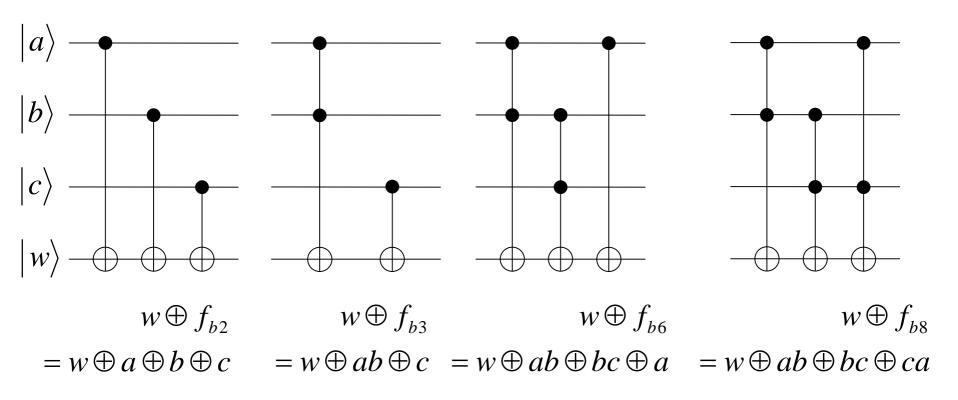
$$f_{b0} = a f_{b4} = ab \oplus a \oplus c f_{b8} = ab \oplus bc \oplus ca$$

$$f_{b1} = a \oplus b f_{b5} = ab \oplus a \oplus b \oplus c f_{b9} = ab \oplus bc \oplus ca \oplus a \oplus b$$

$$f_{b2} = a \oplus b \oplus c f_{b6} = ab \oplus bc \oplus a$$

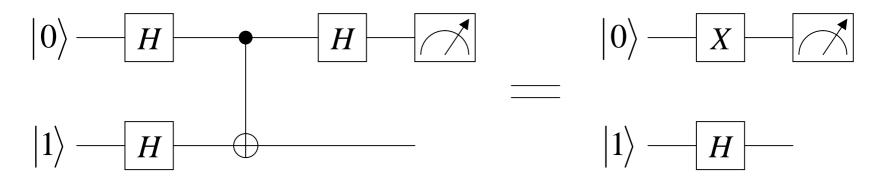
$$f_{b3} = ab \oplus c f_{b7} = ab \oplus bc \oplus a \oplus b$$

3-bit DJ: Balanced

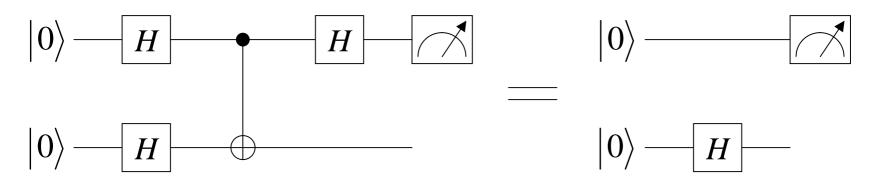


Quiz 1

Prove the following circuit identity by converting the circuit sequentially



Also show that X in the upper line vanish if the initial state of the second qubit is $|0\rangle$



Quiz 2

Construct all the 2-bit F gates based on the list below

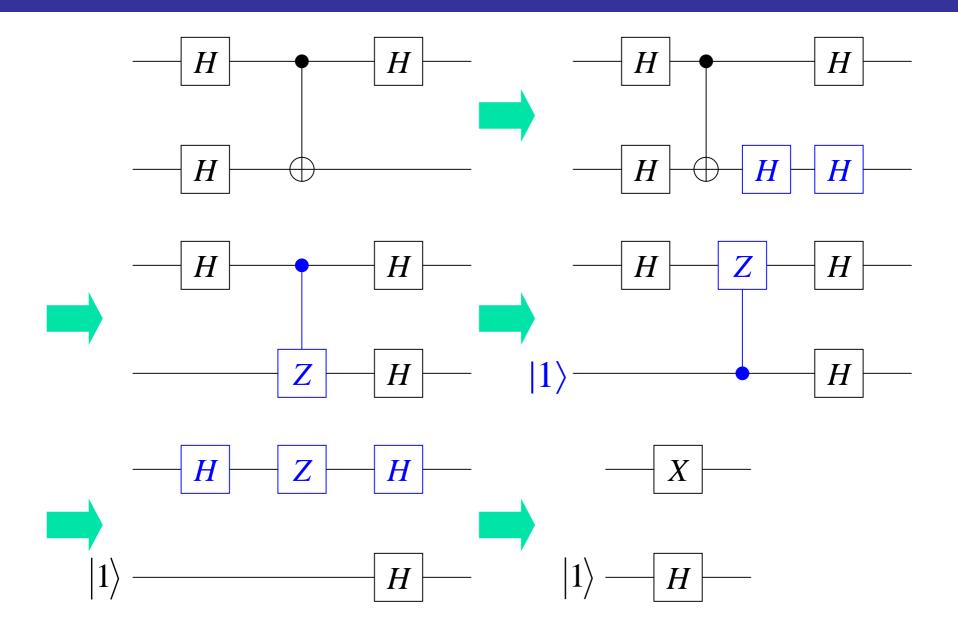
x ab	ala	Constant		Balanced						
	ab	f_{c0}	f_{c1}	f_{b0}	f_{b1}	f_{b2}	f_{b3}	f_{b4}	f_{b5}	
0	00	0	1	0	0	0	1	1	1	
1	01	0	1	0	1	1	1	0	0	
2	10	0	1	1	0	1	0	1	0	
3	11	0	1	1	1	0	0	0	1	

$$f_{c0}(x) = 0 f_{b0}(x) = a f_{b3}(x) = \overline{a}$$

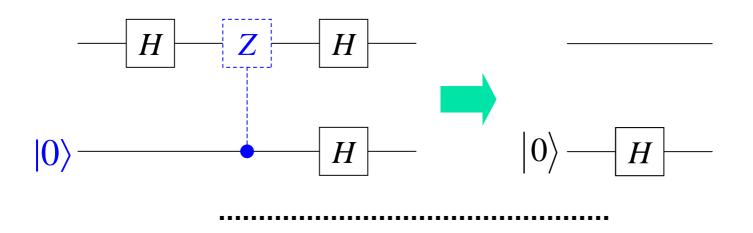
$$f_{c1}(x) = 1 f_{b1}(x) = b f_{b4}(x) = \overline{b}$$

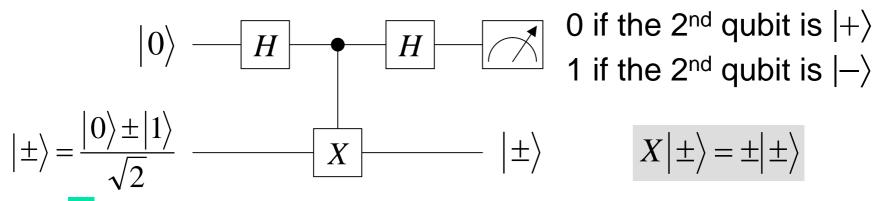
$$f_{b2}(x) = a \oplus b f_{b5}(x) = \overline{a \oplus b}$$

Answer



Answer



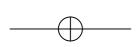


We can know the state of the 2^{nd} qubit without destroying it (Measurement of X)

Answer

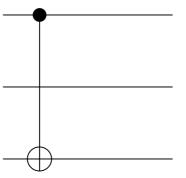
Constant

$$f_{c0}(x) = 0$$

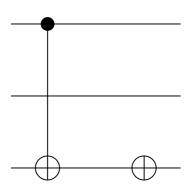


$$f_{c1}(x) = 1$$

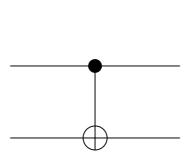
Balanced



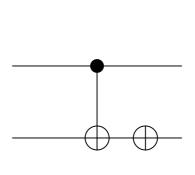
$$f_{h0}(x) = a$$



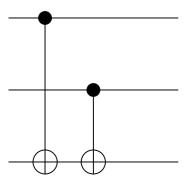
$$f_{b3}(x) = \overline{a}$$



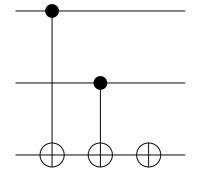
$$f_{b1}(x) = b$$



$$f_{b4}(x) = b$$



$$f_{b0}(x) = a$$
 $f_{b1}(x) = b$ $f_{b2}(x) = a \oplus b$



$$f_{b3}(x) = \overline{a}$$
 $f_{b4}(x) = \overline{b}$ $f_{b5}(x) = a \oplus b$