Deutsch-Jozsa Algorithm

School on Quantum Computing @Yagami

Day 1, Lesson 3
13:00-14:00, March 22, 2005

Eisuke Abe

Department of Applied Physics and Physico-Informatics,
and CREST-JST, Keio University

Outline

- Ideas for quantum algorithm
- Quantum parallelism
- Deutsch-Jozsa algorithm
- Deutsch's problem
- Implementation of DJ algrorithm
- Examples
- 1-bit
- 2-bit (as a quiz)
- 3-bit

The inventors

© Aya Furuta

Hadamard on n qubits

2 qubits
$|0\rangle-H$

$$
|0\rangle-H
$$

$H|0\rangle \otimes H|0\rangle$
$=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
$=\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle)$
$=\frac{1}{2}(|0\rangle+|1\rangle+|2\rangle+|3\rangle)=\frac{1}{2} \sum_{x=0}^{3}|x\rangle$
n qubits

$x=x_{1} x_{2} \cdots x_{n} \quad$ with $\quad x_{i}=0,1$

$$
5=101=2^{2} \times 1+2^{1} \times 0+2^{0} \times 1
$$

$|0\rangle^{\otimes n}$

Hadamard on n qubits

$$
|x\rangle f^{n} H^{\otimes n}-\frac{1}{2^{n / 2}} \sum_{z}(-1)^{x^{x} \mid}|z\rangle
$$

$$
\begin{aligned}
& H^{\otimes n}\left|x_{1}\right\rangle\left|x_{2}\right\rangle \cdots\left|x_{n}\right\rangle \\
= & \frac{1}{2^{n / 2}}\left(\sum_{z_{1}}(-1)^{x_{1} \cdot z_{1}}\left|z_{1}\right\rangle\right) \cdots\left(\sum_{z_{n}}(-1)^{x_{n} \cdot z_{n}}\left|z_{n}\right\rangle\right) \\
= & \frac{1}{2^{n / 2}} \sum_{z_{1}, z_{2} \cdots z_{n}}(-1)^{x_{1} \cdot z_{1}}(-1)^{x_{2} \cdot z_{2}} \cdots(-1)^{x_{n} \cdot z_{n}}\left|z_{1} z_{2} \cdots z_{n}\right\rangle \\
= & \frac{1}{2^{n / 2}} \sum_{z}(-1)^{x \cdot z}|z\rangle \quad \begin{array}{l}
x \cdot z \equiv x_{1} \cdot z_{1}+x_{2} \cdot z_{2}+\cdots+x_{n} \cdot z_{n} \\
\text { Bitwise inner product of } x \text { and } z \text { modulo } 2
\end{array}
\end{aligned}
$$

Quantum parallelism

Suppose we are given a quantum gate U_{f}

$$
U_{f}|x\rangle|y\rangle=|x\rangle|y \oplus f(x)\rangle
$$

where $f(x)$ is a binary function
Remarkably, for proper inputs, we can encode all the information on $f(x)$ by applying U_{f} only once

$$
\frac{1}{2^{n / 2}} \sum_{x=0}^{2^{n}-1}|x\rangle|0\rangle \xrightarrow{U_{f}} \frac{1}{2^{n / 2}} \sum_{x=0}^{2^{n}-1} \frac{|x\rangle|f(x)\rangle}{\text { Entangled }}
$$

Quantum parallelism

Is this useful?

The answer is NO, because we must observe the state to extract information out of it, which prevents us from enjoying the full power of quantum entanglement and quantum parallelism

Quantum interference is the key

Deutsch's problem

Definition

A binary function $f(x)$ is called constant if it outputs only 0 , or only 1 , for all values of x

A binary function $f(x)$ is called balanced if it outputs 0 for half of all the possible x , and 1 for the other half

Constant	Balanced			
x $f(x)$ 0 0 1 0 2 0 3 0		\quad	x	$f(x)$
:---:	:---:			
0	0			
1	0			
2	1			
3	1	\quad	x	$f(x)$
:---:	:---:			
0	0			
1	0			
2	0			
3	1			

Deutsch's problem

Constant or balanced, that is the problem

Alice
 x_{0}

Bob
 $f\left(x_{0}\right)$

How many times does Alice have to query Bob to determine the type of his function?

Deutsch's problem: Classical case

Alice
 Bob

knows $n=2$

Before the game starts

$$
x=0 \quad \stackrel{\text { Query }}{\longleftrightarrow} f(0)=0
$$

Still cannot
distinguish from $\quad \boldsymbol{x}=\mathbf{1}$ $f(x)=(0,0,0,0)$

Answer

$$
f(1)=0
$$

$$
0 \leq x \leq 2^{n}-1
$$

The game ends $x=\mathbf{x} \stackrel{\text { Query }}{\rightleftarrows} f(2)=\mathbf{1}$
Answer
The worst case requires $2^{n / 2}+1$ queries

Quantum circuit for DJ

Register bits
$|0\rangle$
Work bit

$$
\begin{array}{cc}
H^{\otimes n}|x\rangle=\frac{1}{2^{n / 2}} \sum_{z}(-1)^{x \cdot z}|z\rangle & F|x\rangle|w\rangle=|x\rangle|w \oplus f(x)\rangle \\
x \cdot z \equiv x_{1} \cdot z_{1}+x_{2} \cdot z_{2}+\cdots+x_{n} \cdot z_{n} & Z|w\rangle=(-1)^{w}|w\rangle
\end{array}
$$

Implementing DJ

$$
|0\rangle^{\otimes n}|0\rangle \xrightarrow{H^{\otimes n}} \frac{1}{2^{n / 2}} \sum_{x}|x\rangle|0\rangle
$$

Create a linear superposition state

$$
\xrightarrow{F} \frac{1}{2^{n / 2}} \sum_{x}|x\rangle|f(x)\rangle
$$

Encode information on $f(x)$ into the work bit

Implementing DJ

$$
\begin{aligned}
& |0\rangle \overbrace{}^{n} \stackrel{H^{\otimes n}}{F \mid}+\square \\
& \frac{1}{2^{n / 2}} \sum_{x}|x\rangle|f(x)\rangle \xrightarrow{Z} \frac{1}{2^{n / 2}} \sum_{x}(-1)^{f(x)}|x\rangle|f(x)\rangle
\end{aligned}
$$

Add nonlocal phase shifts which carry information on $f(x)$

$$
\xrightarrow{F} \frac{1}{2^{n / 2}} \sum_{x}(-1)^{f(x)}|x\rangle|0\rangle
$$

Erase information on $f(x)$ from the work bit

Implementing DJ

$$
\begin{gathered}
|0\rangle f^{n} \stackrel{H^{\otimes n}}{|0\rangle} \xrightarrow{\frac{1}{2^{n / 2}} \sum_{x}(-1)^{f(x)}|x\rangle|0\rangle \xrightarrow{H^{\otimes n}} \sum_{z} \sum_{x} \frac{(-1)^{f(x)+x \cdot z}}{2^{n}}}|z\rangle|0\rangle \\
\hline Z
\end{gathered}
$$

$$
H^{\otimes n}|x\rangle=\frac{1}{2^{n / 2}} \sum_{z}(-1)^{x \cdot z}|z\rangle
$$

Probability amplitude for the state $|z\rangle$

Get $z=0$ if and only if f is a constant function

Implementing DJ

Probability amplitude for the state $|0\rangle^{\otimes n}$

$$
\sum_{x} \frac{(-1)^{f(x)}}{2^{n}}=\left\{\begin{array}{cll}
\pm 1 & \text { (constant) } & \begin{array}{l}
\text { Only the constant } \\
0
\end{array} \\
\text { (balanced) } & \text { bactions bring the register the initial state }
\end{array}\right.
$$

$\underline{n=2}$, constant case
Constructive interference

$$
\sum_{x=0}^{3} \frac{(-1)^{f(x)}}{2^{2}}=\frac{(-1)^{0}+(-1)^{0}+(-1)^{0}+(-1)^{0}}{4}=1
$$

$\underline{n=2}$, balanced case
Destructive interference

$$
\sum_{x=0}^{3} \frac{(-1)^{f(x)}}{2^{2}}=\frac{(-1)^{0}+(-1)^{1}+(-1)^{0}+(-1)^{1}}{4}=0
$$

Revised version

A clever choice of the work bit simplifies the circuit

$$
\begin{aligned}
& |0 \oplus f(x)\rangle-|1 \oplus f(x)\rangle \\
& =\left\{\begin{array}{l}
|0\rangle-|1\rangle \text { if } f(x)=0 \\
|1\rangle-|0\rangle \text { if } f(x)=1
\end{array}\right. \\
& =(-1)^{f(x)}(|0\rangle-|1\rangle)
\end{aligned}
$$

$$
\begin{aligned}
&|0\rangle^{\otimes n}|1\rangle \xrightarrow{H^{\otimes n+1}} \frac{1}{2^{n / 2}} \sum_{x}|x\rangle\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] \xrightarrow{F} \frac{\frac{1}{2^{n / 2}} \sum_{x}(-1)^{f(x)}|x\rangle\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right]}{\text { State after }} \\
& \xrightarrow{H^{\otimes n}} \frac{1}{2^{n}} \sum_{x, z}(-1)^{f(x)+x \cdot z}|z\rangle\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] \quad \text { the } 2^{\text {nd }} F \text { gate }
\end{aligned}
$$

1-bit $f(x)$

x	Constant		Balanced	
	$f_{c 0}$	$f_{c 1}$	$f_{b 0}$	$f_{b 1}$
0	0	1	0	1
1	0	1	1	0

$$
\begin{array}{ll}
f_{c 0}(x)=0 & f_{b 0}(x)=x \\
f_{c 1}(x)=1 & f_{b 1}(x)=\bar{x}
\end{array}
$$

$$
F|x\rangle|w\rangle=|x\rangle|w \oplus f(x)\rangle
$$

What is the explicit quantum circuit for the F gate?

1-bit F gate

Constant

$$
w \oplus f_{c 0}=w
$$

$$
w \oplus f_{c 1}=\bar{w}
$$

$w \oplus f_{b 0}=w \oplus x$
$w \oplus f_{b 1}=w \oplus x \oplus 1$

1-bit DJ: Constant f_{co}

$$
\begin{gathered}
|0\rangle-\mathrm{H} \\
H H|0\rangle=\frac{1}{2}(|0\rangle+|1\rangle+|0\rangle-|1\rangle)=|0\rangle \\
\text { Constructive interference }
\end{gathered}
$$

The initial state $|0\rangle$ "survives" due to the constructive interference, while the other state $|1\rangle$ is erased due to the destructive interference

1-bit DJ: Balanced f_{bo}

$$
\left.\begin{array}{ll}
|0\rangle & \begin{array}{l}
|0 \oplus x\rangle-|1 \oplus x\rangle \\
\\
=
\end{array} \\
|1\rangle\rangle-|1\rangle \text { if } x=0 \\
|1\rangle-|0\rangle \text { if } x=1
\end{array}\right\}
$$

$$
\left.|0\rangle|1\rangle \xrightarrow{H^{\otimes 2}} \frac{1}{\sqrt{2}} \sum_{x=0}^{1}|x\rangle\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] \xrightarrow{C_{r w}} \frac{1}{\sqrt{2}} \sum_{x=0}^{1} \frac{(-1)^{x}|x\rangle}{\sqrt{2}}\right]
$$

Z gate on the register

$|0\rangle-\Psi \quad, \quad \rightarrow$ Destructive interference

$$
|1\rangle-H \quad H Z H|0\rangle=\frac{1}{2}(|1\rangle+|0\rangle+|1\rangle-|0\rangle)=|1\rangle
$$

2-bit $f(x)$

x	$a b$	Constant			Balanced $\left.{ }_{4} C_{2}=6\right)$						
		$f_{c 0}$	$f_{c 1}$	$f_{b 0}$	$f_{b 1}$	$f_{b 2}$	$f_{b 3}$	$f_{b 4}$	$f_{b 5}$		
0	00	0	1	0	0	0	1	1	1		
1	01	0	1	0	1	1	1	0	0		
2	10	0	1	1	0	1	0	1	0		
3	11	0	1	1	1	0	0	0	1		

$$
\begin{array}{lll}
f_{c 0}(x)=0 & f_{b 0}(x)=a & \\
f_{c 1}(x)=1 & f_{b 1}(x)=b & \\
& f_{b 4}(x)=\bar{a}(x)=a \oplus b & f_{b 5}(x)=\overline{a \oplus b}
\end{array}
$$

2-bit F gates can be constructed from only CNOT and NOT

3-bit balanced $f(x)$

$f_{b 0}=a$
$f_{b 1}=a \oplus b$
$f_{b 2}=a \oplus b \oplus c$
$f_{b 3}=a b \oplus c$
$f_{b 4}=a b \oplus a \oplus c$
$f_{b 5}=a b \oplus a \oplus b \oplus c$
$f_{b 6}=a b \oplus b c \oplus a$
$f_{b 7}=a b \oplus b c \oplus a \oplus b$
$f_{b 8}=a b \oplus b c \oplus c a$
$f_{b 9}=a b \oplus b c \oplus c a \oplus a \oplus b$

Number of balanced functions

$$
{ }_{8} C_{4}=70
$$

3-bit F gates require not only CNOT but Toffoli

3-bit balanced $f(x)$

x	$a b c$	$f_{b 0}$	$f_{b 1}$	$f_{b 2}$	$f_{b 3}$	$f_{b 4}$	$f_{b 5}$	$f_{b 6}$	$f_{b 7}$	$f_{b 8}$	$f_{b 9}$
0	000	0	0	0	0	0	0	0	0	0	0
1	001	0	0	1	1	1	1	0	0	0	0
2	010	0	1	1	0	0	1	0	1	0	1
3	011	0	1	0	1	1	0	1	0	1	0
4	100	1	1	1	0	1	1	1	1	0	1
5	101	1	1	0	1	0	0	1	1	1	0
6	110	1	0	0	1	0	1	0	1	1	1
7	111	1	0	1	0	1	0	1	0	1	1
$\#$ of blcd fns	6	6	2	6	12	6	12	12	2	6	

$f_{b 0}=a \quad f_{b 4}=a b \oplus a \oplus c \quad f_{b 8}=a b \oplus b c \oplus c a$
$f_{b 1}=a \oplus b \quad f_{b 5}=a b \oplus a \oplus b \oplus c \quad f_{b 9}=a b \oplus b c \oplus c a \oplus a \oplus b$
$f_{b 2}=a \oplus b \oplus c \quad f_{b 6}=a b \oplus b c \oplus a$
$f_{b 3}=a b \oplus c \quad f_{b 7}=a b \oplus b c \oplus a \oplus b$

3-bit DJ: Balanced

$w \oplus f_{b 2}$

$w \oplus f_{b 3}$
$=w \oplus a b \oplus c=w \oplus a b \oplus b c \oplus a=w \oplus a b \oplus b c \oplus c a$

Quiz 1

Prove the following circuit identity by converting the circuit sequentially

Also show that X in the upper line vanish if the initial state of the second qubit is $|0\rangle$

Quiz 2

Construct all the 2-bit F gates based on the list below

x	$a b$	Constant		Balanced						
		$f_{c 0}$	$f_{c 1}$	$f_{b 0}$	$f_{b 1}$	$f_{b 2}$	$f_{b 3}$	$f_{b 4}$	$f_{b 5}$	
0	00	0	1	0	0	0	1	1	1	
1	01	0	1	0	1	1	1	0	0	
2	10	0	1	1	0	1	0	1	0	
3	11	0	1	1	1	0	0	0	1	

$$
\begin{array}{lll}
f_{c 0}(x)=0 & f_{b 0}(x)=a & \\
f_{b 3}(x)=\bar{a} \\
f_{c 1}(x)=1 & f_{b 1}(x)=b & \\
& f_{b 2}(x)=\bar{b}(x)=a \oplus b & f_{b 5}(x)=\overline{a \oplus b}
\end{array}
$$

Answer

$|1\rangle-H \quad|1\rangle-H$

Answer

$\mid \pm)=\frac{|0\rangle \pm 1\rangle}{\sqrt{2}}$

We can know the state of the $2^{\text {nd }}$ qubit without destroying it (Measurement of X)

Constant
\qquad
\qquad
$f_{c 0}(x)=0$

$f_{c 1}(x)=1$

Balanced

$f_{b 0}(x)=a$

$f_{b 3}(x)=\bar{a}$
$f_{b 4}(x)=\bar{b}$
$f_{b 5}(x)=\overline{a \oplus b}$

