Quantum computation and its physical realization by superconducting quantum circuits

Eisuke Abe
RIKEN Center for Quantum Computing

August 30, 2022 (Online)
2022 RIKEN-UCHU Summer School
Quantum Research on Nanomaterials with Optoelectronic Analysis

Platforms of quantum computers

Photonic chips

Semiconductors

Nature 569, 532 (2019) Huang et al.

Nature 464, 45 (2010) Ladd et al.

My CV

- 2001.4-2006.3(Keio) \rightarrow Quantum computing (silicon donors)
- 2006.4 - 2009.12 (ISSP, Tokyo) \rightarrow Quantum transport (GaAs QDs, AI SET)
- 2010.1-2011.6 (Oxford) \rightarrow Hybrid system (spin-cavity coupling)
- 2011.7 - 2015.3 (Stanford) \rightarrow Quantum network (InAs QDs)
- 2015.4-2019.1 (Keio) \rightarrow Quantum sensing (diamond NV centers)
- 2019.2 - Present (RIKEN) \rightarrow Quantum computing (Superconducting quantum circuits)

"Quantum Computer" in the news

Quantum Computer

Q All \quad Images 国 News Videos © Shopping : More
$\times 4$ $\% 0$

S Science
Ordinary computers can beat Google's quantum computer after all

If the quantum computing era dawned 3 years ago, its rising sun may have ducked behind a cloud. In 2019, Google researchers claimed they had

1 day ago
(3) Phys.org

Developing a new approach for building quantum computers Quantum computing, though still in its early days, has the potential to dramatically increase processing power by harnessing the strange. 1 day ago

(ars Technica

Post-quantum encryption contender is taken out by singlecore PC and 1 hour
In the US government's ongoing campaign to protect data in the age of quantum computers, a new and powerful attack that used a single.
1 day ago
τ Tom's Hardware
BMW's 3854-Variable Problem Solved in Six Minutes With Quantum Computing
Quantum computing specialist QCI claims quantum advantage with its Entropy Quantum Computing approach. It solved an optimization problem for 6 days ago

埆 CNBC
JPMorgan hires scientist Charles Lim to help protect financial system from quantum-supremacy threat
JPMorgan Chase has hired a quantum-computing expert to be the bank's global head for quantum communications and cryptography, according to a
6 days ago
"Wow, there are lots of

- developments
- interests (both scientific \& business)
- debates
- hypes
about quantum computer!"
"Wait, what really is it?"
"Well, it uses quantum effects for computation blah blah blah"
"Hum... it sounds like tautology"

Contents

- Quantum computation
- From an electron in a double-well potential to qubit
- Quantum gates
- Deutsch-Jozsa algorithm
- Quantum error correction
- DiVincenzo's criteria and the need of QEC
- Spin, spin resonance, and spin relaxation
- Basics of quantum error correction
- Superconducting quantum circuits
- Circuit QED and transmon
- Quantum control
- Recent experiments by Google and ETH

Contents

- Quantum computation
- From an electron in a double-well potential to qubit
- Quantum gates
- Deutsch-Jozsa algorithm

Quantum error correction

- DiVincenzo's criteria and the need of QEC
- Spin, spin resonance, and spin relaxation
- Basics of quantum error correction
- \quad Superconducting quantum circuits
- Circuit QED and transmon
- Quantum control
- Recent experiments by Google and ETH

Nobel Prize in Physics, 1973

Leo Esaki
(1925-)
© Nobel Foundation

Ivar Giaever (1929-)
© Nobel Foundation

Brian Josephson (1940-)
© Nobel Foundation
"for their experimental discoveries regarding tunneling phenomena in semiconductors and superconductors, respectively"
"for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena which are generally known as the Josephson effects"

Nobel Prize in Physics, 1973

Leo Esaki (1925-)
© Nobel Foundation

New Phenomenon in Narrow Germanium $p-n$ Junctions

Leo Esaki
Tokyo Tsushin Kogyo, Limited, Shinagawa, Tokyo, Japan (Received October 11, 1957)

Fig. 2. Energy diagram of the $p-n$ junction at $300^{\circ} \mathrm{K}$ and no bias voltage.
"for their experimental discoveries regarding tunneling phenomena in semiconductors and superconductors, respectively"

- Tunnel (Esaki) diode
\rightarrow Electron is a WAVE

FIG. 1. Semilog plots of the measured current-voltage characteristic at $200^{\circ} \mathrm{K}, 300^{\circ} \mathrm{K}$, and $350^{\circ} \mathrm{K}$.

From tunnel diode to quantum dot

Resonant tunneling diode \rightarrow Vertical QD (1996)

- Single electron transistor
\rightarrow Electron is a PARTICLE

Lateral double quantum dot

Lateral double quantum dot

$$
V_{\mathrm{g}}<0
$$

Depleted area

Single electron in a double-well potential

L
L
R

A single electron (wavefunction) can spread over the two QDs (bonding \& antibonding states)

Single electron in a double-well potential

$\psi_{L}(\boldsymbol{r})$

L R

Normalization
$\int\left|\psi_{L}(\boldsymbol{r})\right|^{2} d \boldsymbol{r}=\int\left|\psi_{R}(\boldsymbol{r})\right|^{2} d \boldsymbol{r}=1$
Orthogonality

$$
\int \psi_{R}^{*}(\boldsymbol{r}) \psi_{L}(\boldsymbol{r}) d \boldsymbol{r}=0
$$

Measuring the location of an electron

Normalization
$\int\left|\psi_{L}(\boldsymbol{r})\right|^{2} d \boldsymbol{r}=\int\left|\psi_{R}(\boldsymbol{r})\right|^{2} d \boldsymbol{r}=1$
Orthogonality
$\int \psi_{R}^{*}(\boldsymbol{r}) \psi_{L}(\boldsymbol{r}) d \boldsymbol{r}=0$

Measuring the location of an electron

Born rule

$$
\begin{aligned}
& \left|\int \psi_{B}^{*}(\boldsymbol{r}) \psi_{L}(\boldsymbol{r}) d \boldsymbol{r}\right|^{2}=0.5 \\
& \left|\int \psi_{B}^{*}(\boldsymbol{r}) \psi_{R}(\boldsymbol{r}) d \boldsymbol{r}\right|^{2}=0.5
\end{aligned}
$$

Measuring the location of an electron

Born rule

$$
\begin{aligned}
& \left|\int \psi_{B}^{*}(\boldsymbol{r}) \psi_{L}(\boldsymbol{r}) d \boldsymbol{r}\right|^{2}=0.5 \\
& \left|\int \psi_{B}^{*}(\boldsymbol{r}) \psi_{R}(\boldsymbol{r}) d \boldsymbol{r}\right|^{2}=0.5
\end{aligned}
$$

Measuring the location of an electron

Born rule

$$
\begin{aligned}
& \left|\int \psi_{A}^{*}(\boldsymbol{r}) \psi_{L}(\boldsymbol{r}) d \boldsymbol{r}\right|^{2}=0.5 \\
& \left|\int \psi_{A}^{*}(\boldsymbol{r}) \psi_{R}(\boldsymbol{r}) d \boldsymbol{r}\right|^{2}=0.5
\end{aligned}
$$

$$
\psi_{A}(\boldsymbol{r})=\frac{1}{\sqrt{2}}\left[\psi_{L}(\boldsymbol{r})-\psi_{R}(\boldsymbol{r})\right]
$$

Antibonding state

Measuring the location of an electron

Born rule

$$
\begin{aligned}
& \left|\int \psi_{A}^{*}(\boldsymbol{r}) \psi_{L}(\boldsymbol{r}) d \boldsymbol{r}\right|^{2}=0.5 \\
& \left|\int \psi_{A}^{*}(\boldsymbol{r}) \psi_{R}(\boldsymbol{r}) d \boldsymbol{r}\right|^{2}=0.5
\end{aligned}
$$

Measuring the location of an electron

Born rule

$$
\begin{aligned}
& \left|\int \psi^{*}(\boldsymbol{r}) \psi_{L}(\boldsymbol{r}) d \boldsymbol{r}\right|^{2}=0.75 \\
& \left|\int \psi^{*}(\boldsymbol{r}) \psi_{R}(\boldsymbol{r}) d \boldsymbol{r}\right|^{2}=0.25
\end{aligned}
$$

Measuring the location of an electron

Born rule

$$
\begin{aligned}
& \left|\int \psi^{*}(\boldsymbol{r}) \psi_{L}(\boldsymbol{r}) d \boldsymbol{r}\right|^{2}=0.75 \\
& \left|\int \psi^{*}(\boldsymbol{r}) \psi_{R}(\boldsymbol{r}) d \boldsymbol{r}\right|^{2}=0.25
\end{aligned}
$$

Measuring the location of an electron

Quantum bit (Qubit)

Can we use the WAVE nature of an electron for computation?

Measurement determines the electron's location (Localization = PARTICLE)

Contents

- Quantum computation
- From an electron in a double-well potential to qubit
- Quantum gates
- Deutsch-Jozsa algorithm

Quantum error correction

- DiVincenzo's criteria and the need of QEC
- Spin, spin resonance, and spin relaxation
- Basics of quantum error correction
- \quad Superconducting quantum circuits
- Circuit QED and transmon
- Quantum control
- Recent experiments by Google and ETH

Quantum gate

Having bits is not enough to do computation

Operations (ops, gates) relevant for qubits?

X (NOT) gate

NOT is the only nontrivial 1-bit op for classical computation

X (NOT) gate

The same op but we can use a superposition state as input

Z gate

Z gate

H gate

H gate

Impossible gate

Impossible gate

Impossible gate

Possible gates obeying the rule of quantum mechanics are known as unitary gates (X, H...)

Qubit representation

Vector representation

$$
|0\rangle=\binom{1}{0} \quad|1\rangle=\binom{0}{1}
$$

"Ket" in the Dirac notation
For now, you may just think of it as just a column vector

Superposition state

$$
|\psi\rangle=a|0\rangle+b|1\rangle=\binom{a}{b}
$$

|1)

$|a|^{2}+|b|^{2}=1$

X gate

$X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
$X|0\rangle=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{1}{0}=\binom{0}{1}=|1\rangle$
$X|1\rangle=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{0}{1}=\binom{1}{0}=|0\rangle$

Z gate

$Z|0\rangle=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{1}{0}=\binom{1}{0}=|0\rangle$
$Z|1\rangle=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{0}{1}=\binom{0}{-1}=-|1\rangle$

H gate

H gate

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Interference

$$
H \frac{1}{\sqrt{2}}(|0\rangle \pm|1\rangle)=\frac{1}{2}(|0\rangle+|1\rangle \pm|0\rangle \mp|1\rangle)=\left\{\begin{array}{l}
|0\rangle \\
|1\rangle
\end{array}\right.
$$

S gate

Qubit representation: Bloch sphere

$|a|^{2}+|b|^{2}=1$
$a, b \in \boldsymbol{C}$

2-qubit system

Vector representation of 2-qubit system

$$
\begin{aligned}
& |00\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad|01\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \quad|10\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \quad|11\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) \\
& |\psi\rangle=a|00\rangle+b|01\rangle+c|10\rangle+d|11\rangle=\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right) \\
& |a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}=1
\end{aligned}
$$

CNOT gate

$$
\mathrm{CNOT}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

$\operatorname{CNOT}\left(\begin{array}{l}a \\ b \\ c \\ d\end{array}\right)=\left(\begin{array}{l}a \\ b \\ d \\ c\end{array}\right)$

H_{2} gate

$$
H_{2}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right) \quad H_{2}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

H_{2} gate

H_{2} gate

H_{2} gate

H_{2} gate

Quantum computation, conceptually

$0 . .00 \quad 0 . .01 \quad 0 . . .10$
1... 10 1... 11 Superposition of all possible inputs

answers, but may contain garbage

Quantum computation, conceptually

$0 . .00 \quad 0 . .01 \quad 0 . . .10$
1... 10 1... 11 Superposition of all possible inputs

You may or may not get an answer. Not so happy....

(20\%...)

Quantum computation, conceptually

$0 . .00 \quad 0 . .01 \quad 0 . . .10$
1... 10 1... 11 Superposition of all possible inputs

(2nd trial)

Quantum computation, conceptually

$0 . .00 \quad 0 . .01 \quad 0 . . .10$
1... 10 1... 11 Superposition of all possible inputs

You may or may not get an answer. Not so happy....

(15\%...)

Quantum computation, conceptually

$0 . .00 \quad 0 . . .01 \quad 0 . .10$
1... 10 1... 11 Superposition of all possible inputs

After computation/before measurement, we want candidates to be actually an answer (or at least very close to it)

Quantum computation, conceptually

$0 . .00 \quad 0 . .01 \quad 0 . . .10$
1... 10 1... 11 Superposition of all possible inputs

Now you are happy!!

(100\%!)

Quantum computation

- Start from a superposition state (quantum parallelism), unitary-transform it into a state where the probability amplitude of the answer state is large enough (quantum interference), and measure
\rightarrow Deutsch-Jozsa algorithm (next topic)
- For specific tasks, quantum computers can outperform classical computers, but not almighty
\rightarrow Scientific American 298, (3) 62 (2008) Aaronson, "The limits of quantum computers"
- Algorithms: Data search (Grover), phase estimation (Kitaev), factoring (Shor), solving linear equations (Harrow-Hassidim-Lloyd), quantum simulation (Feynman) ...
\rightarrow PRX Quantum 2, 040203 (2021) Martyn et al., "Grand Unification of Quantum Algorithms"

Contents

- Quantum computation
- From an electron in a double-well potential to qubit
- Quantum gates
- Deutsch-Jozsa algorithm

Quantum error correction

- DiVincenzo's criteria and the need of QEC
- Spin, spin resonance, and spin relaxation
- Basics of quantum error correction

Superconducting quantum circuits

- Circuit QED and transmon
- Quantum control
- Recent experiments by Google and ETH

Deutsch-Jozsa algorithm

- The first quantum algorithm that showed the potential of quantum computers
- Deterministic (give a 100% answer)
- Of no practical use
- Easy to see the roles of quantum parallelism and quantum interference

Quantum circuit

$0 \quad 1$

$$
a=0,1
$$

Only n "wires" are required to represent n-qubit gates
(2^{n} wires in the left figure)

Not to be confused with "superconducting quantum circuit," which refers to a physical device based on circuit QED

H gate

$$
|a\rangle-H \quad \frac{1}{\sqrt{2}} \sum_{b=0,1}(-1)^{a \cdot b}|b\rangle=\frac{|0\rangle+(-1)^{a}|1\rangle}{\sqrt{2}}
$$

$$
\left\{\begin{array} { l }
{ H | 0 \rangle = \frac { | 0 \rangle + | 1 \rangle } { \sqrt { 2 } } } \\
{ H | 1 \rangle = \frac { | 0 \rangle - | 1 \rangle } { \sqrt { 2 } } }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
H\binom{1}{0}=\frac{1}{\sqrt{2}}\binom{1}{1} \\
H\binom{0}{1}=\frac{1}{\sqrt{2}}\binom{1}{-1}
\end{array} \Longleftrightarrow H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\right.\right.
$$

H_{3} gate

$H_{3}|000\rangle$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2^{3}}}(|0\rangle+|1\rangle)(|0\rangle+|1\rangle)(|0\rangle+|1\rangle) \\
& =\frac{1}{\sqrt{2^{3}}}(|000\rangle+|001\rangle+|010\rangle+|011\rangle+|100\rangle+|101\rangle+|110\rangle+|111\rangle) \\
& =\frac{1}{\sqrt{2^{3}}} \sum_{a, b, c=0,1}|a b c\rangle=\frac{1}{\sqrt{2^{3}}} \sum_{x=0}^{2^{3}-1}|x\rangle
\end{aligned}
$$

H_{n} gate

$$
\begin{array}{r}
|x\rangle=\left|a_{1}\right\rangle\left|a_{2}\right\rangle \cdots\left|a_{n}\right\rangle+\frac{n}{H_{n}} \quad \frac{1}{\sqrt{2^{n}}} \sum_{y}(-1)^{x \cdot y}|y\rangle \\
x \cdot y \equiv a_{1} \cdot b_{1}+a_{2} \cdot b_{2}+\cdots+a_{n} \cdot b_{n}
\end{array}
$$

$$
\begin{aligned}
H_{n}|x\rangle & =\frac{1}{\sqrt{2^{n}}}\left(\sum_{b_{1}=0,1}(-1)^{a_{1} \cdot b_{1}}\left|b_{1}\right\rangle\right) \cdots\left(\sum_{b_{n}=0,1}(-1)^{a_{n} \cdot b_{n}}\left|b_{n}\right\rangle\right) \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{b_{1}, b_{2} \cdots b_{n}}(-1)^{a_{1} \cdot b_{1}+a_{2} \cdot b_{2}+\cdots+a_{n} \cdot b_{n}}\left|b_{1} b_{2} \cdots b_{n}\right\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{y}(-1)^{x \cdot y}|y\rangle
\end{aligned}
$$

Deutsch's problem

Definition: Binary function $f(x)$ is called "constant" if it returns the same output (all 0s or all 1s) for all the inputs x, and is called "balanced" if it returns half $0 s$ and half 1 s

Examples:

Constant	Balanced
x $f(x)$ 0 0 1 0 2 0 3 0 x $f(x)$ 0 0 1 1 2 1 3 0	x $f(x)$ 0 0 1 1 2 1 3 1

Deutsch's problem

Deutsch has a bit-string $f(x)$ that is known to be either constant or balanced. How many queries will Newton and Schrödinger have to make in order to judge the type (constant or balanced) of $f(x)$?

Deutsch-Jozsa algorithm

Entangled state carrying all the info on $f(x)$

$$
\begin{array}{r}
|0 \ldots 0\rangle|0\rangle \xrightarrow{H_{n}} \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1}|x\rangle|0\rangle \xrightarrow{F} \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1}|x\rangle|f(x)\rangle \\
\xrightarrow{Z} \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1}(-1)^{f(x)}|x\rangle|f(x)\rangle \begin{array}{l}
\text { Encode the info on } \\
\text { into the phase }
\end{array}
\end{array}
$$

Deutsch-Jozsa algorithm

$$
F|x\rangle|a\rangle=|x\rangle|a \oplus f(x)\rangle
$$

Erase the info on $f(x)$

$$
\begin{aligned}
& \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1}(-1)^{f(x)}|x\rangle|f(x)\rangle \xrightarrow{F} \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1}(-1)^{f(x)|x\rangle|0\rangle} \\
& \xrightarrow{H_{n}} \sum_{y}\left(\sum_{x} \frac{(-1)^{f(x)+x \cdot y}}{2^{n}}\right)|y\rangle|0\rangle \quad H_{n}|x\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{y}(-1)^{x \cdot y}|y\rangle
\end{aligned}
$$

Deutsch-Jozsa algorithm

Probablity amplitude of returning to |000...)

$$
\sum_{x=0}^{2^{n}-1} \frac{(-1)^{f(x)+x \cdot 0}}{2^{n}}=\left\{\begin{array}{cl}
\pm 1 & (\text { Constant }) \\
0 & (\text { Balanced })
\end{array}\right.
$$

$\boldsymbol{n}=\mathbf{2}$, constant
Constructive interference

$$
\sum_{x=0}^{3} \frac{(-1)^{f(x)}}{2^{n}}=\frac{(-1)^{0}+(-1)^{0}+(-1)^{0}+(-1)^{0}}{4}=1
$$

$\boldsymbol{n}=\mathbf{2}$, balanced
Destructive interference

$$
\sum_{x=0}^{3} \frac{(-1)^{f(x)}}{2^{n}}=\frac{(-1)^{0}+(-1)^{1}+(-1)^{1}+(-1)^{0}}{4}=0
$$

2-bit $f(x)$

x	$a b$	Constant		Balanced $\left.{ }_{4} C_{2}=6\right)$						
		$f_{\mathrm{c} 0}$	$f_{\mathrm{c} 1}$	$f_{\mathrm{b} 0}$	$f_{\mathrm{b} 1}$	$f_{\mathrm{b} 2}$	$f_{\mathrm{b} 3}$	$f_{\mathrm{b} 4}$	$f_{\mathrm{b} 5}$	
0	00	0	1	0	0	0	1	1	1	
1	01	0	1	0	1	1	1	0	0	
2	10	0	1	1	0	1	0	1	0	
3	11	0	1	1	1	0	0	0	1	

$$
\begin{array}{lll}
f_{\mathrm{c} 0}(x)=0 & f_{\mathrm{b} 0}(x)=a & f_{\mathrm{b} 3}(x)=\bar{a} \\
f_{\mathrm{c} 1}(x)=1 & f_{\mathrm{b} 1}(x)=b & f_{\mathrm{b} 4}(x)=\bar{b} \\
& f_{\mathrm{b} 2}(x)=a \oplus b & f_{\mathrm{b} 5}(x)=\overline{a \oplus b}
\end{array}
$$

Homework 1

Constrict all the 2-bit F gates using only X (NOTs) and CNOTs Note: 2-bit F gates are 3Q gates

Contents

- Quantum Computation
- From an electron in a double-well potential to qubit
- Quantum gates
- Deutsch-Jozsa algorithm
- Quantum error correction
- DiVincenzo's criteria and the need of QEC
- Spin, spin resonance, and spin relaxation
- Basics of quantum error correction

Superconducting quantum circuits

- Circuit QED and transmon
- Quantum control
- Recent experiments by Google and ETH

DiVincenzo's criteria

1. A scalable physical system with well characterized qubits
2. The ability to initialize the state of the qubits to a simple fiducial state, such as |000....〉
3. Long relevant decoherence times, much longer than the gate operation time
4. A "universal" set of quantum gates
5. A qubit-specific measurement capability

Universal

David DiVincenzo ©RWTH Aachen U.

- 1Q gates + CNOT (can construct arbitrary n-qubit gates)
- T, H, S + CNOT (can approximate arbitrary n-qubit gates with arbitrary accuracy)

$$
T=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right) \quad H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad S=T^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right) \quad \text { CNOT }=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Clifford gates

Difficulty of quantum computation experimental

- Encode quantum information into the phase and extract the answer by using quantum interference
\rightarrow Quantum coherence must be preserved during computation

The physical nature of information

Rolf Landauer
(1927-1999)
Oieee

Rolf Landauer ${ }^{1}$
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA

Received 9 May 1996
Communicated by V.M. Agranovich

Abstract

Information is inevitably tied to a physical representation and therefore to restrictions and possibilities related to the laws of physics and the parts available in the universe. Quantum mechanical superpositions of information bearing states can be used, and the real utility of that needs to be understood. Quantum parallelism in computation is one possibility and will be assessed pessimistically. The energy dissipation requirements of computation, of measurement and of the communications link are discussed. The insights gained from the analysis of computation has caused a reappraisal of the perceived wisdom in the other two fields. A concluding section speculates about the nature of the laws of physics, which are algorithms for the handling of information, and must be executable in our real physical universe.

Difficulty of quantum computation experimental

- Encode quantum information into the phase and extract the answer by using quantum interference
\rightarrow Quantum coherence must be preserved during computation

Landauer's footnote
(...) all papers on quantum computing should carry a footnote:
"This proposal, like all proposals for quantum computation, relies on speculative technology, does not in its current form take into account all possible sources of noise, unreliability and manufacturing error, and probably will not work."

Difficulty of quantum computation experimental

- Encode quantum information into the phase and extract the answer by using quantum interference
\rightarrow Quantum coherence must be preserved during computation
- Quantum states cannot be copied (no-cloning theorem)
\rightarrow Quantum error correction \& fault-tolerant quantum computation

Landauer's view on QEC

(...) progress has been made toward error reduction, and we can cite only a sample of the material on its way [21]. This is far more progress in fact than this author thought possible, but not enough to permit computation. (...) Undoubtedly, further progress will be made, but victory is not yet in sight.

[^0]
No-cloning theorem

There exists no unitary gate that realizes $U|\psi\rangle|0\rangle=|\psi\rangle|\psi\rangle$ for an arbitrary state $|\psi\rangle$

LETTERS TO NATURE

A single quantum cannot be cloned

W. K. Wootters*

Center for Theoretical Physiss, The University of Texas at Austin,
w. H. Zurek

Theoretical Astrophysiss 130-33, California Institute of Technology,
Pasadena, California 91125 , USA

If a photon of definite polarization encounters an excited atom, there is typically some nonvanishing probability that the atom will emit a second photon by stimulated emission. Such a photon photon. But is it possible by this or any other process to amplify a quantum state, that is, to produce several copies of a quantum system (the polarized photon in the present case) each having the same state as the original? If it were, the amplifying process could be used to ascertain the exact state of a quantum system: by first producing a beam of identically polarized copies and then measuring the Stokes parameters ${ }^{1}$. We show here that the linearity of quantum mechanics forbids such replication and that this conclusion holds for all quantum systems. Note that if photons could be cloned, a plausible argument
could be made for the possibility of faster-than-light communi cation ${ }^{2}$. It is well known that for certain non-separably correlated Einstein-Podolsky-Rosen pairs of photons, once an observer has made a polarization measurement (say, vertical versus horizontal) on one member of the pair, the other one, egarded as having the same polarization ${ }^{3}$. If this second photo could be replicated and its precise polarization measured as above, it would be possible to ascertain whether, for example, the first photon had been subjected to a measurement of linear or circular polarization. In this way the first observer would be
able to transmit information faster than light by encoding his message into his choice of measurement. The actual impossibility of cloning photons, shown below, thus prohibits superluminal communication by this scheme. That such a scheme must fail for some reason despite the well-established existence of long-range quantum correlations ${ }^{6-8}$, is a general consequenc
A perfect amplifying

Present address: Departmen
Hassachusetis 012667 USA.
on an incoming photon with polarization state $|s\rangle$

$$
\left|A_{0}\right\rangle|s\rangle \rightarrow\left|A_{\mathrm{s}}\right\rangle|s s\rangle
$$

(1)

Here $\left|A_{0}\right\rangle$ is the 'ready' state of the apparatus, and $\left|A_{s}\right\rangle$ is its final state, which may or may not depend on the polarization
of the original photon. The symbol $|s s\rangle$ refers to the state of of he radiation field in which there are two photons each having the polarization $|s\rangle$. Let us suppose that such an amplification can in fact be accomplished for the vertical polarization $|\uparrow\rangle$
and for the horizontal polarization $\mid \leftrightarrow)$. That is,

$$
\begin{equation*}
\left|A_{0}\right\rangle|\uparrow\rangle \rightarrow\left|A_{\text {verr }}\right\rangle \mid\langle\uparrow\rangle \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{0}\right\rangle|\leftrightarrow\rangle \rightarrow\left|A_{\text {hor }}\right\rangle|\leftrightarrow\rangle \tag{3}
\end{equation*}
$$

According to quantum mechanics this transformation should be representable by a linear (in fact unitary) operator. It therefore follows that if the incoming photon has the polarization given by the linear combination $\alpha|\uparrow\rangle+\beta|\leftrightarrow\rangle$-for example, it
could be linearly polarized in a direction 45° from the vertical, so that $\alpha=\beta=2^{-1 / 2}$-the result of its interaction with the apparatus will be the superposition of equations (2) and (3):
$\left.\left.A_{0}\right\rangle(\alpha|\downarrow\rangle+\beta|\leftrightarrow\rangle) \rightarrow \alpha\left|A_{\text {verr }}\right\rangle|\langle\uparrow\rangle+\beta| A_{\text {hor }}\right\rangle\langle\leftrightarrows\rangle$
(4)

If the apparatus states $\left\langle A_{\text {vert }}\right\rangle$ and $\left|A_{\text {noo }}\right\rangle$ are not identical, then the two photons emerging from the apparatus are in a mixed state of polarizain. .
$\alpha|\uparrow\rangle+\beta|\xi\rangle$
In neither of these cases is the final state the same as the state with two photons both having the polarization $\alpha|\uparrow\rangle+\beta|\leftrightarrow\rangle$. That state, the one which would be required if the apparatus were to be a perfect amplifier, can be written as
$2^{-1 / 2}\left(\alpha a_{\text {vert }}^{+}+\beta a_{\text {hor }}^{+}\right)^{2}|0\rangle=\alpha^{2}|\uparrow \uparrow\rangle+2^{1 / 2} \alpha \beta|\uparrow \leftrightarrow\rangle+\beta^{2}|\leftrightarrow\rangle$
which is a pure state different from the one obtained above by superposition [equation (5)].

Thus no apparions The above asts which will amplify an arbitrary ity of a device which can ampent does not rule out the possibils vertical and horizontal Indify two special polarizations, such distinguishes between these two any measuring device which for example, could be used to trigger such an a a Nicol prism for example, could be used to trigger such an amplification. quantum system. As in the case of photons, linearity does not forbid the amplification of any given state by a device designed especially for that state, but it does rule out the existence of a device capable of amplifying an arbitrary state.

Milonni (unpublished work) has shown that the process of stimulated emission does not lead to quantum amplification, because if there is stimulated emission there must also be-with equal probability in the case of one incoming photon-sponted photon is entirely indopendent of the polarization of the original.
It is conceivable that a more sophisticated amplifying apparatus could get around Milonni's argument. We have therefore presented the above simple argument, based on the linearity of quantum mechanics, to show that no apparatus, however complicated, can amplify an arbitrary polarization.
We stress that the question of replicating individual photo is of practical interest. It is obviously closely related to the
quantum limits on the noise in amplifiers ${ }^{0 / n}$. Moreover, an experiment devised to establish the extent to which polarization of single photons can be replicated through the process stimulated emission is under way (A. Gozzini, personal com munication; and see ref. 12). The quantum mechanical predic randomly polarized, spontaneously emitted, photon.
We thank Alain Aspect, Carl Caves, Ron Dickman, Ted Jacobson, Peter Milonni, Marlan Scully, Pierre Meystre, Don Page and John Archibald Wheeler for enjoyable and stimulating discussions.
This work was supported in part by the NSF (PHY 78-26592 Chace Tolman Fellowship

No-cloning theorem

There exists no unitary gate that realizes $U|\psi\rangle|0\rangle=|\psi\rangle|\psi\rangle$ for an arbitrary state $|\psi\rangle$

Proof: If such U exits...

$$
\begin{aligned}
& U|0\rangle|0\rangle=|0\rangle|0\rangle \\
& U|1\rangle|0\rangle=|1\rangle|1\rangle \\
& \text { ป } \\
& U(a|0\rangle+b|1\rangle)|0\rangle=a U|0\rangle|0\rangle+b U|1\rangle|0\rangle \\
& =a|0\rangle|0\rangle+b|1\rangle|1\rangle \\
& \neq(a|0\rangle+b|1\rangle)(a|0\rangle+b|1\rangle)
\end{aligned}
$$

Contents

- Quantum Computation
- From an electron in a double-well potential to qubit
- Quantum gates
- Deutsch-Jozsa algorithm
- Quantum error correction
- DiVincenzo's criteria and the need of QEC
- Spin, spin resonance, and spin relaxation
- Basics of quantum error correction

Superconducting quantum circuits

- Circuit QED and transmon
- Quantum control
- Recent experiments by Google and ETH

Electron spin

Intrinsic, quantum mechanical angular momentum of an electron $S=1 / 2\left(m_{s}= \pm 1 / 2\right)$
Hamiltonian \& energy levels

$$
H_{Z}=\frac{g \mu_{B} B_{0}}{\hbar} S_{z}
$$

$B_{0}=0<H_{B_{0}>0}|\uparrow\rangle=\frac{g \mu_{B} B_{0}}{2}|\uparrow\rangle \quad S_{z}|\uparrow\rangle=\frac{\hbar}{2}|\uparrow\rangle$

Quantum coherence

$|0\rangle \equiv|\downarrow\rangle$
$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$
$|1\rangle \equiv|\uparrow\rangle$

In many cases, the spin dynamics can be described phenomenologically (Bloch equation)

Larmor precession

Torque equation

Magnetic moment: $\boldsymbol{\mu}=\gamma \boldsymbol{J}$

Frame rotating at angular velocity Ω :
Rotate slower...why?

Larmor precession

Frame rotating at angular velocity Ω :
Rotate slower...why?

DC field along the z direction becomes weaker

Spin resonance

Frame rotating at angular velocity Ω :
Rotate slower...why?

DC field along the z direction becomes weaker

Spin resonance

Frame rotating at $\Omega=\gamma B_{0}$

$$
\mu \hat{z}(t=0)
$$

$-\mu \hat{z}\left(t=1 / 2 \gamma B_{1}\right)$
π pulse

- Rotation on the Bloch sphere
- Rotations about the $\pm \hat{x}, \pm \hat{y}$ axes are realized by adjusting the microwave phases

Spin relaxation: $T_{1} \& T_{2}$

Bloch equation

$$
\frac{d \boldsymbol{\mu}}{d t}=\boldsymbol{\mu} \times \gamma \boldsymbol{B}_{0}-\frac{\boldsymbol{\mu}_{\|}-\boldsymbol{\mu}_{0}}{T_{1}}-\frac{\boldsymbol{\mu}_{\perp}}{T_{2}}
$$

Energy relaxation (Change the direction of a spin)

Felix Bloch
(1905-1983)
© Nobel Foundation

Phase relaxation (Change the precession frequency)

$$
\frac{1}{T_{2}}=\frac{1}{2 T_{1}}+\frac{\gamma^{2}}{2} \int_{-\infty}^{\infty}\left\langle b_{z}(\tau) b_{z}(0)\right\rangle d \tau
$$

\rightarrow Incoherent process (Error!)

Spin relaxation: $T_{1} \& T_{2}$

Bloch equation

$$
\frac{d \boldsymbol{\mu}}{d t}=\boldsymbol{\mu} \times \gamma \boldsymbol{B}_{0}-\frac{\boldsymbol{\mu}_{\|}-\boldsymbol{\mu}_{0}}{T_{1}}-\frac{\boldsymbol{\mu}_{\perp}}{T_{2}}
$$

Longitudinal relaxation

Pure dephasing

|1>

Transverse relaxation

Contents

- Quantum Computation
- From an electron in a double-well potential to qubit
- Quantum gates
- Deutsch-Jozsa algorithm
- Quantum error correction
- DiVincenzo's criteria and the need of QEC
- Spin, spin resonance, and spin relaxation
- Basics of quantum error correction
- \quad Superconducting quantum circuits
- Circuit QED and transmon
- Quantum control
- Recent experiments by Google and ETH

Errors in quantum circuits

Coupling with the environment

$$
|\psi\rangle\left|e_{0}\right\rangle \xrightarrow{U_{\mathrm{E}}}|\psi\rangle\left|e_{I}\right\rangle+X|\psi\rangle\left|e_{X}\right\rangle+Z|\psi\rangle\left|e_{Z}\right\rangle+X Z|\psi\rangle\left|e_{Y}\right\rangle
$$

Basic ideas of quantum error correction

- Continuous errors can be discretized by measurements
- Any 1Q errors are correctable as long as we can detect \& correct bit-flip (X), phase-flip (Z), phase-bit-flip (XZ) errors

Check

$$
\begin{gathered}
U_{\mathrm{E}}|\psi\rangle\left|e_{0}\right\rangle=|\psi\rangle\left|e_{I}\right\rangle+X|\psi\rangle\left|e_{X}\right\rangle+Z|\psi\rangle\left|e_{Z}\right\rangle+X Z|\psi\rangle\left|e_{Y}\right\rangle \\
\left\{\begin{array}{l}
U_{\mathrm{E}}|0\rangle\left|e_{0}\right\rangle=|0\rangle\left|e_{00}\right\rangle+|1\rangle\left|e_{10}\right\rangle \\
U_{\mathrm{E}}|1\rangle\left|e_{0}\right\rangle=|0\rangle\left|e_{01}\right\rangle+|1\rangle\left|e_{11}\right\rangle
\end{array}\right.
\end{gathered}
$$

L.H.S $\quad U_{\mathrm{E}}(\alpha|0\rangle+\beta|1\rangle)\left|e_{0}\right\rangle=\alpha|0\rangle\left|e_{00}\right\rangle+\alpha|1\rangle\left|e_{10}\right\rangle+\beta|0\rangle\left|e_{01}\right\rangle+\beta|1\rangle\left|e_{11}\right\rangle$

R.H.S.

$$
\begin{aligned}
& (\alpha|0\rangle+\beta|1\rangle)\left|e_{I}\right\rangle+(\alpha|1\rangle+\beta|0\rangle)\left|e_{X}\right\rangle+(\alpha|0\rangle-\beta|1\rangle)\left|e_{Z}\right\rangle+(\alpha|1\rangle-\beta|0\rangle)\left|e_{Y}\right\rangle \\
= & \alpha|0\rangle\left(\left|e_{I}\right\rangle+\left|e_{Z}\right\rangle\right)+\alpha|1\rangle\left(\left|e_{X}\right\rangle+\left|e_{Y}\right\rangle\right)+\beta|0\rangle\left(\left|e_{X}\right\rangle-\left|e_{Y}\right\rangle\right)+\beta|1\rangle\left(\left|e_{I}\right\rangle-\left|e_{Z}\right\rangle\right)
\end{aligned}
$$

$$
\longrightarrow\left|e_{I, Z}\right\rangle=\frac{\left|e_{00}\right\rangle \pm\left|e_{11}\right\rangle}{2} \quad\left|e_{X, Y}\right\rangle=\frac{\left|e_{10}\right\rangle \pm\left|e_{01}\right\rangle}{2}
$$

CNOT \& X gate

$$
\begin{aligned}
C_{12} X_{2}|a\rangle|b\rangle & =C_{12}|a\rangle|b \oplus 1\rangle \\
& =|a\rangle|a \oplus b \oplus 1\rangle
\end{aligned}
$$

$$
\begin{aligned}
C_{12} X_{1}|a\rangle|b\rangle & =C_{12}|a \oplus 1\rangle|b\rangle \\
& =|a \oplus 1\rangle|a \oplus b \oplus 1\rangle
\end{aligned}
$$

$$
\begin{aligned}
X_{2} C_{12}|a\rangle|b\rangle & =X_{2}|a\rangle|a \oplus b\rangle \\
& =|a\rangle|a \oplus b \oplus 1\rangle
\end{aligned}
$$

$$
\begin{aligned}
X_{1} X_{2} C_{12}|a\rangle|b\rangle & =X_{1} X_{2}|a\rangle|a \oplus b\rangle \\
& =|a \oplus 1\rangle|a \oplus b \oplus 1\rangle
\end{aligned}
$$

CNOT \& Z gate

Homework 2
Verify the above circuit relations using

$$
\begin{aligned}
& C_{12}|a\rangle|b\rangle=|a\rangle|a \oplus b\rangle \\
& Z|a\rangle=(-1)^{a}|a\rangle
\end{aligned}
$$

Detection \& correction of bit-flip error

$|\psi\rangle|00\rangle=(\alpha|0\rangle+\beta|1\rangle)|00\rangle$

$|\psi\rangle_{L}=\alpha|000\rangle+\beta|111\rangle$

Detection \& correction of bit-flip error

$|\psi\rangle|00\rangle=(\alpha|0\rangle+\beta|1\rangle)|00\rangle$

$|\psi\rangle_{L}=\alpha|000\rangle+\beta|111\rangle$

Detection \& correction of bit-flip error

Detection \& correction of bit-flip error

$\begin{array}{cc}|\psi\rangle|00\rangle=(\alpha|0\rangle+\beta|1\rangle)|00\rangle & (\alpha|1\rangle+\beta|0\rangle)|11\rangle \\ \\ \| & \\ |\psi\rangle_{L}=\alpha|000\rangle+\beta|111\rangle & \begin{array}{l}\text { Error propagation } \\ \text { (}\end{array} \text { No need to measure }|\psi\rangle \text { itself }\end{array}$

Detection \& correction of bit-flip error

Detection \& correction of bit-flip error

Detection \& correction of phase-flip error

$$
\begin{aligned}
& |\psi\rangle|00\rangle=(\alpha|0\rangle+\beta|1\rangle)|00\rangle \\
& \\
& \downarrow \\
& \alpha|000\rangle+\beta|111\rangle \longrightarrow|\psi\rangle_{L}=\alpha|+++\rangle+\beta|---\rangle
\end{aligned}
$$

Detection \& correction of phase-flip error

$|\psi\rangle|00\rangle=(\alpha|0\rangle+\beta|1\rangle)|00\rangle$
\downarrow
$\alpha|000\rangle+\beta|111\rangle \longrightarrow|\psi\rangle_{L}=\alpha|+++\rangle+\beta|---\rangle \quad| \pm\rangle \equiv \frac{|0\rangle \pm|1\rangle}{\sqrt{2}}$

Detection \& correction of phase-flip error

Converted into bit-flip error

$$
\begin{aligned}
H Z H & =X \\
H H & =I
\end{aligned}
$$

Homework 3
Verify $H Z H=X, H H=I$ using $\left\{\begin{aligned} & \\ & Z=0,1 \\ & Z|a\rangle=(-1)^{a}|a\rangle \\ & X|a\rangle=|a+1\rangle=|\bar{a}\rangle\end{aligned}\right.$

Detection \& correction of phase-flip error

Syndrome measurement

Measurement of Operator M

$$
\begin{array}{lll}
M^{2}=I & \text { Self-adjoint } & M P_{ \pm}|\psi\rangle= \pm P_{ \pm}|\psi\rangle \\
P_{ \pm}=\frac{I \pm M}{2} & \text { Projector: } P_{ \pm}|\psi\rangle \text { are eigenstates of } M \text { with eigenvalues } \lambda= \pm 1
\end{array}
$$

$$
\begin{aligned}
|0\rangle|\psi\rangle & \longrightarrow \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|\psi\rangle \longrightarrow \frac{1}{\sqrt{2}}(|0\rangle|\psi\rangle+|1\rangle M|\psi\rangle) \\
& \longrightarrow \frac{1}{2}[(|0\rangle+|1\rangle)|\psi\rangle+(|0\rangle-|1\rangle) M|\psi\rangle] \longrightarrow|0\rangle P_{+}|\psi\rangle+|1\rangle P_{-}|\psi\rangle
\end{aligned}
$$

Syndrome meas. (Shor code)

Logical qubit $\quad|\psi\rangle_{\mathrm{L}}=\alpha|0\rangle_{\mathrm{L}}+\beta|1\rangle_{\mathrm{L}}$

$$
\begin{aligned}
& |0\rangle_{\mathrm{L}}=\frac{1}{2 \sqrt{2}}(|000\rangle+|111\rangle)(|000\rangle+|111\rangle)(|000\rangle+|111\rangle) \\
& |1\rangle_{\mathrm{L}}=\frac{1}{2 \sqrt{2}}(|000\rangle-|111\rangle)(|000\rangle-|111\rangle)(|000\rangle-|111\rangle)
\end{aligned}
$$

Error syndrome

$$
\begin{aligned}
& M_{1}=Z_{1} Z_{2} \\
& M_{2}=Z_{2} Z_{3} \\
& M_{3}=Z_{4} Z_{5} \\
& M_{4}=Z_{5} Z_{6} \\
& M_{5}=Z_{7} Z_{8} \\
& M_{6}=Z_{8} Z_{9} \\
& M_{7}=X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} \\
& M_{8}=X_{4} X_{5} X_{6} X_{7} X_{8} X_{9}
\end{aligned}
$$

- Logical qubits satisfy $M_{i}|\psi\rangle_{\mathrm{L}}=|\psi\rangle_{\mathrm{L}}$ with $\lambda=1$
- $M_{i} M_{j}=M_{j} M_{i}$ (simultaneous observable)
- At least one of X_{i}, Y_{i}, Z_{i} anti-commutes with M_{i}
- Errors are detected by the parity change

Example) Bit-flip on Q1

$$
\begin{aligned}
& M_{1} X_{1}|\psi\rangle_{\mathrm{L}}=-X_{1} M_{1}|\psi\rangle_{\mathrm{L}}=-X_{1}|\psi\rangle_{\mathrm{L}} \\
& M_{i \neq 1} X_{1}|\psi\rangle_{\mathrm{L}}=X_{1} M_{i \neq 1}|\psi\rangle_{\mathrm{L}}=X_{1}|\psi\rangle_{\mathrm{L}}
\end{aligned}
$$

Q-circuit for Shor code

Surface code

Phys. Rev. A 86, 032324 (2012) Fowler et al.

- 2D lattice
- Nearest-neighbor coupling
- High error-tolerance ($\left.{ }^{\sim} 1 \%\right)$

Superconducting quantum circuits at the surface code threshold for fault tolerance
R. Barends ${ }^{1 *}$, J. Kelly ${ }^{1 *}$, A. Megrant ${ }^{1}$, A. Veitia ${ }^{2}$, D. Sank ${ }^{1}$, E. Jeffrey ${ }^{1}$, T. C. White ${ }^{1}$, J. Mutus ${ }^{1}$, A. G. Fowler ${ }^{1,3}$, B. Campbell ${ }^{1}$, Y. Chen ${ }^{1}$,
Z. Chen ${ }^{1}$, B. Chiaro ${ }^{1}$, A. Dunsworth ${ }^{1}$, C. Neill ${ }^{1}$, P. O’Malley ${ }^{1}$, P. Roushan ${ }^{1}$, A. Vainsencher ${ }^{1}$, J. Wenner ${ }^{1}$, A. N. Korotkov ${ }^{2}$,
A. N. Cleland ${ }^{1}$ \& John M. Martinis ${ }^{1}$

Contents

- Quantum computation
- From an electron in a double-well potential to qubit
- Quantum gates
- Deutsch-Jozsa algorithm

Quantum error correction

- DiVincenzo's criteria and the need of QEC
- Spin, spin resonance, and spin relaxation
- Basics of quantum error correction
- \quad Superconducting quantum circuits
- Circuit QED and transmon
- Quantum control
- Recent experiments by Google and ETH

Cavity QED (Quantum ElectroDynamics)

Interaction between an atom \& a photon confined in a cavity
Optical cavity: Kimble group (Caltech)

Science 287, 1447 (2000) Hood et al. Nature 453, 1023 (2008) Kimble

Physics Today 49, (8) 51 (1996) Haroche \& Raimond
"Quantum Computing: Dream or Nightmare?"
Cs atoms

Detector

Serge Haroche
(1944-)
© Nobel Foundation

Microwave cavity: Haroche group (ENS)
Rev. Mod. Phys. 85, 1083 (2013) Haroche

Circuit QED

Artificial atom- μ wave photon interaction in superconducting quantum circuits

\checkmark System stability (an artificial atom "transmon" doesn't move)
\checkmark Design flexibility
\checkmark Size \& scalability

Nature 431, 162 (2004) Wallraff et al.

Rev. Mod. Phys. 93, 025005 (2021) Blais et al. Phys. Rev. A 69, 062320 (2004) Blais et al.

Harmonic oscillator \& LC circuit

$$
H=\frac{p^{2}}{2 m}+\frac{1}{2} k x^{2}
$$

Hamiltonian

$$
H=\frac{Q^{2}}{2 C}+\frac{\Phi^{2}}{2 L}
$$

$$
[\hat{x}, \hat{p}]=i \hbar
$$

Quantization
$[\widehat{\Phi}, \widehat{Q}]=i \hbar$

Energy levels

$$
\omega=\sqrt{\frac{k}{m}} \quad E_{n}=\hbar \omega\left(\frac{1}{2}+n\right) \quad \omega=\frac{1}{\sqrt{L C}}
$$

Harmonic oscillator = Qubit?

$$
E_{01}=E_{12}=E_{23}
$$

$$
E_{n}=\hbar \omega\left(\frac{1}{2}+n\right)
$$

Harmonic oscillator = Qubit?

Bosonic field

$$
\left[a, a^{\dagger}\right]=1
$$

a^{\dagger} : Creation op.
a : Annihilation op.

Resonant on all transitions
(Nonselectivity to 2-level)

$$
E_{n}=\hbar \omega\left(\frac{1}{2}+n\right)
$$

Josephson junction

Josephson equation

$$
\{\begin{array}{l}
V=-\frac{\hbar}{2 e} \frac{d \varphi}{d t} \\
I=I_{\mathrm{c}} \sin \varphi
\end{array} \quad \longrightarrow \quad V=-\underbrace{\frac{\hbar}{2 e I_{\mathrm{c}}} \frac{1}{\sqrt{1-\left(I / I_{\mathrm{c}}\right)^{2}}}}_{L_{\mathrm{J}}} \frac{d I}{d t}
$$

(Only) nonlinear, dissipationless inductor
B. Josephson (1940-)
© Nobel Foundation

$$
\longrightarrow U=-\int I V d t=\int\left(\frac{\hbar I_{\mathrm{c}}}{2 e}\right) \sin \varphi \frac{d \varphi}{d t} d t=-E_{\mathrm{J}} \cos \varphi
$$

Josephson junction

Josephson equation

$$
\{\begin{array}{l}
V=-\frac{\hbar}{2 e} \frac{d \varphi}{d t} \\
I=I_{\mathrm{c}} \sin \varphi
\end{array} \quad \longrightarrow \quad V=-\underbrace{\frac{\hbar}{2 e I_{\mathrm{c}}} \frac{1}{\sqrt{1-\left(I / I_{\mathrm{c}}\right)^{2}}}}_{L_{\mathrm{J}}} \frac{d I}{d t}
$$

(Only) nonlinear, dissipationless inductor
B. Josephson (1940-)
© Nobel Foundation

$$
\longrightarrow U=-\int I V d t=\int\left(\frac{\hbar I_{\mathrm{c}}}{2 e}\right) \sin \varphi \frac{d \varphi}{d t} d t=-E_{\mathrm{J}} \cos \varphi
$$

Anharmonic oscillator = Qubit

$E_{01}>E_{12}>E_{23}$

Anharmonic oscillator = Qubit

Ever improving $T_{1} \& T_{2}$

Ever improving $T_{1} \& T_{2}$

Charge qubit

Cooper-pair box

Hamiltonian
$H=4 E_{\mathrm{C}}\left(N-n_{\mathrm{g}}\right)^{2}-E_{\mathrm{J}} \cos \varphi$
Charging energy
$\frac{e^{2}}{2 C_{2}}$
Charge offset

$$
\frac{1}{2} \sum_{N=-\infty}^{\infty}(|N+1\rangle\langle N|+|N\rangle\langle N+1|)
$$

$$
|\varphi\rangle=\frac{1}{\sqrt{2 \pi}} \sum_{N=-\infty}^{\infty} e^{i \varphi N}|N\rangle
$$

Charge qubit

Cooper-pair box

Cooper-pair tunneling = 1D tight-binding model

$$
\cos \varphi|\varphi\rangle
$$

$$
\begin{aligned}
& =\left(\frac{e^{-i \varphi}+e^{i \varphi}}{2}\right) \frac{1}{\sqrt{2 \pi}} \sum_{N=-\infty}^{\infty} e^{i \varphi N}|N\rangle \\
& =\frac{1}{2 \sqrt{2 \pi}} \sum_{N=-\infty}^{\infty} e^{i \varphi(N-1)}|N\rangle+e^{i \varphi(N+1)}|N\rangle
\end{aligned}
$$

$$
=\frac{1}{2 \sqrt{2 \pi}}\left(\sum_{N=-\infty}^{\infty} e^{i \varphi N}|N+1\rangle+\sum_{N=-\infty}^{\infty} e^{i \varphi N}|N-1\rangle\right)
$$

$$
=\frac{1}{2 \sqrt{2 \pi}} \sum_{N=-\infty}^{\infty}\left(\sum_{N^{\prime}=-\infty}^{\infty}\left|N^{\prime}+1\right\rangle\left\langle N^{\prime}\right|+\left|N^{\prime}-1\right\rangle\left\langle N^{\prime}\right|\right) e^{i \varphi N}|N\rangle
$$

$$
=\frac{1}{2} \sum_{N=-\infty}^{\infty}(|N+1\rangle\langle N|+|N\rangle\langle N+1|)|\varphi\rangle
$$

Charge qubit

Cooper-pair box

Charge qubit

Cooper-pair box

$$
H=4 E_{\mathrm{C}}\left(N-n_{\mathrm{g}}\right)^{2}-E_{\mathrm{J}} \cos \varphi
$$

$$
\xrightarrow{\frac{E_{\mathrm{J}}}{E_{\mathrm{C}}} \gg 1} H \approx \frac{1}{2}\left(8 E_{\mathrm{C}}\right) N^{2}+\frac{1}{2} E_{\mathrm{J}} \varphi^{2}
$$

$$
8 E_{\mathrm{C}} \leftrightarrow(C)^{-1}
$$

$$
\xrightarrow{E_{\mathrm{J}} \leftrightarrow(L)^{-1}} \omega_{\mathrm{p}}=\sqrt{8 E_{\mathrm{C}} E_{\mathrm{J}}}
$$

Charge qubit

Transmon

(Transmission-line shunted plasma oscillation qubit)

$$
H=4 E_{\mathrm{C}}\left(N-n_{\mathrm{g}}\right)^{2}-E_{\mathrm{J}} \cos \varphi
$$

$$
\xrightarrow{\frac{E_{\mathrm{J}}}{E_{\mathrm{C}}} \gg 1} H \approx \frac{1}{2}\left(8 E_{\mathrm{C}}\right) N^{2}+\frac{1}{2} E_{\mathrm{J}} \varphi^{2}
$$

$$
8 E_{\mathrm{C}} \leftrightarrow(C)^{-1}
$$

$$
\xrightarrow{E_{\mathrm{J}} \leftrightarrow(L)^{-1}} \omega_{\mathrm{p}}=\sqrt{8 E_{\mathrm{C}} E_{\mathrm{J}}}
$$

Charge qubit

Transmon

(Transmission-line shunted plasma oscillation qubit)

Charge qubit

Transmon

(Transmission-line shunted plasma oscillation qubit)

Strong coupling regime

Jaynes-Cummings Hamiltonian

$$
H_{\mathrm{JC}}=\omega_{\mathrm{q}} \frac{\sigma_{z}}{2}+\omega_{\mathrm{r}} a^{\dagger} a+g\left(\sigma_{+} a+\sigma_{-} a^{\dagger}\right)
$$

Qubit
Cavity (Resonator)

Resonance: $\Delta \equiv \omega_{\mathrm{q}}-\omega_{\mathrm{r}}=0$

$$
\left\{\begin{array}{l}
\omega_{n \pm, \Delta=0}=\omega_{\mathrm{r}}\left(n+\frac{1}{2}\right) \pm g \sqrt{n+1} \\
\left|\Psi_{n \pm, \Delta=0}\right\rangle=\frac{1}{\sqrt{2}}(|\mathrm{~g}, n+1\rangle \pm|\mathrm{e}, n\rangle)
\end{array}\right.
$$

Vacuum Rabi splitting

$g \gg \kappa, \gamma \rightarrow$ Strong coupling

Observation of vacuum Rabi splitting

Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics
A. Wallraff ${ }^{1}$, D. I. Schuster ${ }^{1}$, A. Blais ${ }^{1}$, L. Frunzio ${ }^{1}$, R.- S. Huang ${ }^{1,2}$, J. Majer ${ }^{1}$, S. Kumar ${ }^{1}$, S. M. Girvin ${ }^{1}$ \& R. J. Schoelkopf

Nature 431, 162 (2004) Wallraff et al.

Observation of vacuum Rabi splitting

Climbing the Jaynes-Cummings ladder and observing its \sqrt{n} nonlinearity in a cavity QED system
J. M. Fink ${ }^{1}$, M. Göppl ${ }^{1}$, M. Baur ${ }^{1}$, R. Bianchetti ${ }^{1}$, P. J. Leek ${ }^{1}$, A. Blais ${ }^{2}$ \& A. Wallraff ${ }^{1}$

Contents

-

Quantum computation

- From an electron in a double-well potential to qubit
- Quantum gates
- Deutsch-Jozsa algorithm

Quantum error correction

- DiVincenzo's criteria and the need of QEC
- Spin, spin resonance, and spin relaxation
- Basics of quantum error correction
- Superconducting quantum circuits
- Circuit QED and transmon
- Quantum control
- Recent experiments by Google and ETH

Device parameters

	Fixed-frequency		Frequency-tunable	
Company/Institution	IBM $^{* 1}$	RIKEN ${ }^{* 3}$	Google $^{* 4}$	ETH $^{* 6}$
Number of qubits on a chip	127	64	74	17
Qubit frequency (GHz)	5.06	7.88	$5.98 / 5.97^{* 5}$	$3.95 / 4.73^{* 7}$
Anharmonicity (GHz)	-0.307	-0.385	-0.265	-0.177
Resonator frequency (GHz)	$6.51^{* 2}$	9.44	4.79	$6.98^{* 8}$
$T_{1}(\mu \mathrm{~s})$	98.2	24.8	20.6	32.5
$T_{2}(\mu \mathrm{~s})$	93.6	32.2	30.9	47.0

© Carl De Torres of StoryTK for IBM

(C) A. van Loo

© Google

© ETH Zurich / Quantum Device Lab
*1: https://quantum-computing.ibm.com/services/resources?system=ibm_washington (Avg. Calibrated regularly)
*2: Nature 567, 209 (2019) Havlicek et al. (Avg. resonator freq. of a 5Q device)
*3: Avg. of 56-63Q (depending on the parameters)
*4: arXiv:2207.06431v2 Google Quantum AI (Avg. of 49Q)
*5: Operating freq./Freq. at readout
*6: Nature 605, 669 (2022) Krinner et al. (Avg. of 17Q except qubit \& readout frequencies)
*7: Idle freq./Freq. at readout. Avg. of 9 Q (data qubit)
*8: Avg. of 9 Q (data qubit)

Readout in the dispersive regime

$$
H_{\mathrm{JC}}=\omega_{\mathrm{q}} \frac{\sigma_{z}}{2}+\omega_{\mathrm{r}} a^{\dagger} a+g\left(\sigma_{+} a+\sigma_{-} a^{\dagger}\right)
$$

$\xrightarrow{|\Delta|=\left|\omega_{\mathrm{q}}-\omega_{\mathrm{r}}\right| \gg g, \kappa} H_{\mathrm{JC}}^{\text {disp }}=\left(\omega_{\mathrm{q}}+\chi\right) \frac{\sigma_{z}}{2}+\left(\omega_{\mathrm{r}}+\chi \sigma_{z}\right) a^{\dagger} a$

1Q rotation gate

Hamiltonian of external fields (μ wave pulse)

$$
H_{\mathrm{d}}(t)=E_{d}(t)\left(a^{\dagger} e^{-i \omega_{\mathrm{d}} t}+a e^{i \omega_{\mathrm{d}} t}\right)
$$

$$
\Omega_{\mathrm{R}}=\frac{2 E_{d}(t) g}{\Delta}
$$

$\longrightarrow H_{1 \mathrm{q}}^{\mathrm{rot}}=\left(\omega_{\mathrm{r}}-\omega_{\mathrm{d}}+\chi \sigma_{z}\right) a^{\dagger} a+\left(\omega_{\mathrm{q}}-\omega_{\mathrm{d}}+\chi\right) \frac{\sigma_{z}}{2}+E_{d}(t)\left(a^{\dagger}+a\right)+\Omega_{\mathrm{R}} \frac{\sigma_{x}}{2}$

$$
R_{x}\left(\varphi=\frac{\Omega_{\mathrm{R}} \tau}{2}\right)=e^{-i \Omega_{\mathrm{R}} \frac{\sigma_{x}}{2} \tau}
$$

$$
=\left(\begin{array}{cc}
\cos \left(\frac{\Omega_{\mathrm{R}} \tau}{2}\right) & -i \sin \left(\frac{\Omega_{\mathrm{R}} \tau}{2}\right) \\
-i \sin \left(\frac{\Omega_{\mathrm{R}} \tau}{2}\right) & \cos \left(\frac{\Omega_{\mathrm{R}} \tau}{2}\right)
\end{array}\right)
$$

$$
R_{y}(\varphi)=e^{-i \varphi \sigma_{y}}=\left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right)
$$

In experiments, the rotation axis is set
$R_{z}(\varphi)=e^{-i \varphi \sigma_{z}}=\left(\begin{array}{cc}e^{-i \varphi} & 0 \\ 0 & e^{i \varphi}\end{array}\right)$ by the LO phase

ZY decomposition

Arbitrary 1Q gates can be realized by a combination of $z \& y$ rotations

$$
\begin{aligned}
U & =\left(\begin{array}{ccc}
e^{i(\alpha-\beta / 2-\delta / 2)} \cos \frac{\gamma}{2} & -e^{i(\alpha-\beta / 2+\delta / 2)} \sin \frac{\gamma}{2} \\
e^{i(\alpha+\beta / 2-\delta / 2)} \sin \frac{\gamma}{2} & e^{i(\alpha+\beta / 2+\delta / 2)} \cos \frac{\gamma}{2}
\end{array}\right) \\
& =e^{i \alpha}\left(\begin{array}{cc}
e^{-i \beta / 2} & 0 \\
0 & e^{i \beta / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \frac{\gamma}{2} & -\sin \frac{\gamma}{2} \\
\sin \frac{\gamma}{2} & \cos \frac{\gamma}{2}
\end{array}\right)\left(\begin{array}{cc}
e^{-i \delta / 2} & 0 \\
0 & e^{i \delta / 2}
\end{array}\right)
\end{aligned}
$$

\rightarrow Decomposition is not unique

2Q cross-resonance (CR) gate

Hamiltonian of coupled 2Q system

$$
H_{2 \mathrm{q}}=\underbrace{\omega_{\mathrm{q} 1} \frac{\sigma_{z}^{1}}{2}+\omega_{\mathrm{q} 2} \frac{\sigma_{z}^{2}}{2}}_{\mathrm{H}_{\mathrm{qq}}}+\underbrace{J\left(\sigma_{+}^{1} \sigma_{-}^{2}+\sigma_{-}^{1} \sigma_{+}^{2}\right)}_{H_{J}}
$$

Rotating frame ($H_{\mathrm{d}}^{\text {rot,CR }}$)

$$
H_{\mathrm{d}}^{\mathrm{rot}, \mathrm{CR}}=\omega_{\mathrm{d}}\left(\frac{\sigma_{z}^{1}}{2}+\frac{\sigma_{z}^{2}}{2}\right)
$$

$$
\begin{array}{r}
\Delta_{\mathrm{qq}} \equiv \omega_{\mathrm{q} 1}-\omega_{\mathrm{q} 2} \\
\Delta_{\mathrm{qq}} \gg J \\
\Omega_{\mathrm{CR}}=\frac{E_{\mathrm{q}}(t) J}{\Delta_{\mathrm{qq}}}
\end{array}
$$

$\longrightarrow H_{2 \mathrm{q}}^{\mathrm{rot}}=\left(\omega_{\mathrm{q} 1}-\omega_{\mathrm{d}}+\frac{J^{2}}{\Delta_{\mathrm{qq}}}\right) \frac{\sigma_{z}^{1}}{2}+\left(\omega_{\mathrm{q} 2}-\omega_{\mathrm{d}}-\frac{J^{2}}{\Delta_{\mathrm{qq}}}\right) \frac{\sigma_{z}^{2}}{2}+\underbrace{E_{\mathrm{q}}(t) \sigma_{x}^{1}+\Omega_{\mathrm{CR}} \sigma_{z}^{1} \sigma_{x}^{2}}$
Similar to 10 gate

CNOT from CR

$$
\begin{aligned}
& \omega_{\mathrm{d}}=\omega_{\mathrm{q} 2}-\frac{J^{2}}{\Delta_{\mathrm{qq}}} \longrightarrow H_{\mathrm{d}}^{\mathrm{rot}}=\Omega_{\mathrm{CR}} \sigma_{z}^{1} \sigma_{x}^{2} \\
& \longrightarrow U_{\mathrm{CR}}\left(\theta=\Omega_{\mathrm{CR}} \tau\right)=e^{-i H_{\mathrm{d}}^{\mathrm{rot}} \tau}=\left(\begin{array}{cccc}
\cos \theta & -i \sin \theta & 0 & 0 \\
-i \sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & \cos \theta & i \sin \theta \\
0 & 0 & i \sin \theta & \cos \theta
\end{array}\right) \\
& \\
& \\
& U_{\mathrm{CR}}\left(\frac{\pi}{2}\right)=\frac{1}{\sqrt{2}}\left(-\frac{\pi}{2}\right) \\
& U_{\mathrm{CR}}\left(\frac{\pi}{2}\right) R_{x}\left(-\frac{\pi}{2}\right)
\end{aligned}
$$

Contents

-

Quantum computation

- From an electron in a double-well potential to qubit
- Quantum gates
- Deutsch-Jozsa algorithm

Quantum error correction

- DiVincenzo's criteria and the need of QEC
- Spin, spin resonance, and spin relaxation
- Basics of quantum error correction
- Superconducting quantum circuits
- Circuit QED and transmon
- Quantum control
- Recent experiments by Google and ETH

Quantum supremacy experiment by Google

Article

Quantum supremacy using a programmable superconducting processor

https://doi.org/10.1038/s41586-019-1666-5	Frank Arute ${ }^{1}$, Kunal Arya', Ryan Babbush', Dave Bacon', Joseph C. Bardin ${ }^{1,2}$, Rami Barends ${ }^{1}$,
Received: 22 July 2019	
Accepted: 20 September 2019	Edward Farhi', Brooks Foxen ${ }^{1.5}$, Austin Fowler ${ }^{1}$, Craig Gidney ${ }^{1}$, Marissa Giustina', ${ }^{1}$
Published online: 23 October 2019	Keith Guerin', Steve Habegger', Matthew P. Harrigan', Michael J. Hartmann ${ }^{1.6}$, Alan Ho', Markus Hoffmann ${ }^{1}$, Trent Huang ${ }^{1}$, Travis S. Humble ${ }^{7}$, Sergei V. Isakov ${ }^{1}$, Evan Jeffrey ${ }^{1}$, Zhang Jiang ${ }^{1}$, Dvir Kafri', Kostyantyn Kechedzhi', Julian Kelly ${ }^{1}$, Paul V. Klimov ${ }^{1}$, Sergey Knysh ${ }^{1}$, Alexander Korotkov ${ }^{1,8}$, Fedor Kostritsa', David Landhuis ${ }^{1}$, Mike Lindmark ${ }^{1}$, Erik Lucero ${ }^{1}$, Dmitry Lyakh ${ }^{9}$, Salvatore Mandrà ${ }^{3,10}$, Jarrod R. McClean ${ }^{1}$, Matthew McEwen ${ }^{5}$, Anthony Megrant ${ }^{1}$, Xiao Mi', Kristel Michielsen ${ }^{1,1,2}$, Masoud Mohseni ${ }^{1}$, Josh Mutus ${ }^{1}$, Ofer Naaman ${ }^{1}$, Matthew Neeley ${ }^{1}$, Charles Neill ${ }^{1}$, Murphy Yuezhen Niu ${ }^{1}$, Eric Ostby ${ }^{1}$, Andre Petukhov ${ }^{1}$, John C. Platt ${ }^{1}$, Chris Quintana', Eleanor G. Rieffel ${ }^{3}$, Pedram Roushan ${ }^{1}$, Nicholas C. Rubin ${ }^{1}$, Daniel Sank ${ }^{1}$, Kevin J. Satzinger ${ }^{1}$, Vadim Smelyanskiy ${ }^{1}$, Kevin J. Sung ${ }^{1,13}$, Matthew D. Trevithick ${ }^{1}$, Amit Vainsencher', Benjamin Villalonga ${ }^{1,14}$, Theodore White ${ }^{1}$, Z. Jamie Yao ${ }^{1}$, Ping Yeh ${ }^{1}$, Adam Zalcman ${ }^{1}$, Hartmut Neven ${ }^{1}$ \& John M. Martinis ${ }^{1.5 *}$

John Martinis

Quantum supremacy experiment by Google

Article

Quantum supremacy using a programmable superconducting processor

https://doi.org/10.1038/s41586-019-1666-5 Received: 22 July 2019

Accepted: 20 September 2019
Published online: 23 October 2019

Abstract

Frank Arute ${ }^{1}$, Kunal Arya', Ryan Babbush', Dave Bacon ${ }^{1}$, Joseph C. Bardin ${ }^{1,2}$, Rami Barends ${ }^{1}$, Rupak Biswas ${ }^{3}$, Sergio Boixo', Fernando G. S. L. Brandao ${ }^{1,4}$, David A. Buell', Brian Burkett', Yu Chen', Zijun Chen', Ben Chiaro ${ }^{5}$, Roberto Collins', William Courtney', Andrew Dunsworth', Edward Farhi', Brooks Foxen ${ }^{15}$, Austin Fowler', Craig Gidney', Marissa Giustina', Rob Graff', Keith Guerin', Steve Habegger', Matthew P. Harrigan', Michael J. Hartmann ${ }^{16}$, Alan Ho ${ }^{1}$, Markus Hoffmann', Trent Huang', Travis S. Humble ${ }^{7}$, Sergei V. Isakov ${ }^{1}$, Evan Jeffrey ${ }^{1}$ ', Zhang Jiang', Dvir Kafri', Kostyantyn Kechedzhi', Julian Kelly', Paul V. Klimov', Sergey Knysh', Alexander Korotkov ${ }^{18}$, Fedor Kostritsa', David Landhuis', Mike Lindmark', Erik Lucero ${ }^{1}$, Dmitry Lyakh ${ }^{9}$, Salvatore Mandrà ${ }^{3.10}$, Jarrod R. McClean', Matthew McEwen ${ }^{5}$, Anthony Megrant', Xiao Mi', Kristel Michielsen ${ }^{11,12}$, Masoud Mohseni', Josh Mutus', Ofer Naaman', Matthew Neeley', Charles Neill', Murphy Yuezhen Niu', Eric Ostby', Andre Petukhov', John C. Platt', Chris Quintana', Eleanor G. Rieffel ${ }^{3}$, Pedram Roushan', Nicholas C. Rubin', Daniel Sank', Kevin J. Satzinger', Vadim Smelyanskiy', Kevin J. Sung ${ }^{113}$, Matthew D. Trevithick ${ }^{1}$, Amit Vainsencher', Benjamin Villalonga ${ }^{1,14}$, Theodore White', Z. Jamie Yao', Ping Yeh', Adam Zalcman', Hartmut Neven ${ }^{1}$ \& John M. Martinis ${ }^{1.5 \text { * }}$

Pauli and measurement errors

Average error	Isolated	Simultaneous
Single-qubit $\left(e_{1}\right)$	0.15%	0.16%
Two-qubit $\left(e_{2}\right)$	0.36%	0.62%
Two-qubit, cycle $\left(e_{2 \mathrm{c}}\right)$	0.65%	0.93%
Readout $\left(e_{\mathrm{r}}\right)$	3.1%	3.8%

Quantum supremacy experiment by Google

Laser speckle

Successive application of random 1Q \& 2Q gates results in a reproducible (if no errors) but complicated interference pattern that is, for sufficiently many qubits and gates, intractable by classical computers

Quantum supremacy experiment by Google

$$
\mathcal{F}_{\mathrm{XEB}}=2^{n}\left\langle P\left(x_{i}\right)\right\rangle_{i}-1
$$

- $1 \rightarrow$ no error, $0 \rightarrow$ any error
- $P\left(x_{i}\right)$ computed by classical computers
- Average over many trials

Quantum supremacy experiment by Google

Nature 574, 505 (2019) Arute et al.

The race goes on

Quantum vs. Classical, Quantum vs. Quantum

Google

Quantum Computer
\times ४ 0

Tools

About $1,980,000$ results (0.30 seconds)
S Science
Ordinary computers can beat Google's quantum computer after all

If the quantum computing era dawned 3 years ago, its rising sun may have ducked behind a cloud. In 2019, Google researchers claimed they had
1 day ago

Solving the Sampling Problem of the Sycamore Quantum Circuits

$$
\text { Feng Pan } \odot,{ }^{1,2} \text { Keyang Chen, }{ }^{1,3} \text { and Pan Zhang }{ }^{1,4,5,{ }^{*}}
$$

"If our algorithm could be implemented with high efficiency on a modern supercomputer with ExaFLOPS performance, we estimate that ideally, the simulation would cost a few dozens of seconds, which is faster than Google's quantum hardware"

Strong Quantum Computational Advantage Using a Superconducting Quantum Processor
Yulin Wu, ${ }^{1,2,3}$ Wan-Su Bao, ${ }^{4}$ Sirui Cao, ${ }^{1,2,3}$ Fusheng Chen, ${ }^{1,2,3}$ Ming-Cheng Chen, ${ }^{1,2,3}$ Xiawei Chen, ${ }^{2}$ Tung-Hsun Chung, ${ }^{1,2,}$ Hui Deng, ${ }^{1,2,3}$ Yajie Du, ${ }^{2}$ Daojin Fan, ${ }^{1,2,3}$ Ming Gong, ${ }^{1,2,3}$ Cheng Guo, ${ }^{1,2,3}$ Chu Guo, ${ }^{1,2,3}$ Shaojun Guo, ${ }^{1,2,3}$ Lianchen Han, ${ }^{1,2,3}$ Linyin Hong, ${ }^{5} \mathrm{He}$-Liang Huang, ${ }^{1,2,3,4}$ Yong-Heng Huo, ${ }^{1,2,3}$ Liping $\mathrm{Li}^{2}{ }^{2} \mathrm{Na} \mathrm{Li}{ }^{1,2,3}{ }^{1,2}$ Shaowei Li, ${ }^{1,2,3}$ Yuan Li, ${ }^{1,2,3}$ Futian Liang, ${ }^{1,2,3}$ Chun Lin, ${ }^{6}$ Jin Lin, ${ }^{1,2,3}$ Haoran Qian, ${ }^{1,2,3}$ Dan Qiao, ${ }^{2}$ Hao Rong, ${ }^{1,2,3}$ Hong Su, ${ }^{1,2,3}$ Lihua Sun, ${ }^{1,2,3}$ Liangyuan Wang, ${ }^{2}$ Shiyu Wang, ${ }^{1,2,3}$ Dachao Wu, ${ }^{1,2,3}$ Yu Xu, ${ }^{1,2,3}$ Kai Yan, ${ }^{2}$ Weifeng Yang, ${ }^{5}$ Yang Yang, ${ }^{2}$ Yangsen Ye, ${ }^{1,2,3}$ Jianghan Yin, ${ }^{2}$ Chong Ying, ${ }_{1,2,3}$ Jiale Yu, ${ }_{1,2,3}^{1,2,3}$ Chen Zha, ${ }_{5}^{1,2,3}$ Cha Zhang, ${ }_{1,2,3}^{1,2,3}$ Haibin Zhang, ${ }^{2}$ Kaili Zhang, ${ }^{1,2,3}$ Yiming Zhang, ${ }^{1,2,3}$ Han Zhao, ${ }^{2}$ Youwei Zhao, ${ }^{1,2,3}$ Liang Zhou, ${ }^{5}$ Qingling Zhu, ${ }^{1,2,3}$ Chao-Yang Lu, ${ }^{1,2,3}$ Cheng-Zhi Peng, ${ }^{1,2,3}$ Xiaobo Zhue, ${ }^{1,23}$ and Jian-Wei Pan ${ }^{1.23}$

Phys. Rev. Lett. 127, 180501 (2021) Wu et al. (54 authors)
"The computational cost of the classical simulation of this task is estimated to be 2-3 orders of magnitude higher than the previous work on 53-qubit Sycamore processor"

Error correction experiment by ETH

Article

Realizing repeated quantum error correction in a distance-three surface code

$9\left(=d^{2}\right)$ data qubits, $8\left(=d^{2}-1\right)$ auxiliary qubits, $1(=\lfloor(d-1) / 2\rfloor)$ correctable error
https://doi.org/10.1038/s41586-022-04566-8
Received: 15 November 2021
Accepted: 9 February 2022
Published online: 25 May 2022

Andreas Wallraff https://qudev.phys.ethz.ch/Andreas-Wallraff

Catherine Leroux ${ }^{2,3}$, Christoph Hellings ${ }^{1}$, Stefania Lazar ${ }^{1}$, Francois Swiadek ${ }^{1}$,
Johannes Herrmann', Graham J. Norris', Christian Kraglund Andersen ${ }^{1.8}$, Markus Müller ${ }^{4.5}$, Alexandre Blais ${ }^{2,3,6}$, Christopher Eichler ${ }^{1}$ \& Andreas Wallraff ${ }^{1,7}$

Error correction experiment by ETH

$Z \& X$ stabilizers (Error syndrome)

$$
\begin{aligned}
& S^{Z 1}=Z_{1} Z_{4} \\
& S^{Z 2}=Z_{4} Z_{5} Z_{7} Z_{8} \\
& S^{Z 3}=Z_{2} Z_{3} Z_{5} Z_{6} \\
& S^{Z 4}=Z_{6} Z_{9} \\
& S^{X 1}=X_{2} X_{3} \\
& S^{X 2}=X_{1} X_{2} X_{4} X_{5} \\
& S^{X 3}=X_{5} X_{6} X_{8} X_{9} \\
& S^{X 4}=X_{7} X_{8}
\end{aligned}
$$

Logical operators

Weight-4

$C Z=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$

Error correction experiment by ETH

- Logical state $|0\rangle_{\mathrm{L}},|1\rangle_{\mathrm{L}},| \pm\rangle_{\mathrm{L}}=\left(|0\rangle_{\mathrm{L}} \pm|1\rangle_{\mathrm{L}}\right) / \sqrt{2}$ preparation
\rightarrow Prepare $|0\rangle^{\otimes 9}, X_{\mathrm{L}}|0\rangle^{\otimes 9},|+\rangle^{\otimes 9}, Z_{\mathrm{L}}|+\rangle^{\otimes 9}$ \& run the QEC cycle once (w/o meas.)
- "Leakage" detection/rejection in every cycle

Error correction experiment by ETH

- Error correction in postprocessing
- With $x \approx 2$, "break-even" may be achieved

Summary and references

- Quantum computation and quantum error correction
- The key ingredients of QC are quantum parallelism and quantum interference, which are both susceptible to noise
- QEC protects quantum states by creating larger quantum states, and detects errors via parity measurements without destroying them
- Superconducting qubits
- Circuit QED offers a scalable approach to quantum computing in the microwave domain, as recently demonstrated by various research groups \& companies worldwide
- My symposium talk
- "Quantum Computation and Quantum Information"
- Michael A. Nielsen \& Isaac L. Chuang (Cambridge University Press, 2000)
- "A quantum engineer's guide to superconducting qubits"
- Appl. Phys. Rev. 6, 021318 (2019) Krantz et al.

[^0]: [21] C.H. Bennett, D.P. DiVincenzo, J.A. Smolin and W.K. Wootters, Mixed state entanglement and quantum error correction, Phys. Rev. A., to be published;
 R. Laflamme, C. Miquel, J.-P. Paz and W.H. Zurek, Perfect quantum error correction code, to be published;
 P. Shor, Phys. Rev. A. 52 (1995) 2493.

