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Platforms of quantum computers

Photonic chips

Nature 591, 54 (2021) 
Arrazola et al. (Xanadu)

Superconducting quantum circuits

“Sycamore” ©Google“Eagle” ©IBM

31P

28Si

Nature 569, 532 (2019) Huang et al. Nature 464, 45 (2010) Ladd et al.

Semiconductors

Trapped ions/Cold atoms

Nature 561, 79 (2018) 
Barredo et al.
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My CV

⚫ 2001.4 – 2006.3 (Keio) →  Quantum computing (silicon donors)

⚫ 2006.4 – 2009.12 (ISSP, Tokyo) → Quantum transport (GaAs QDs, Al SET)

⚫ 2010.1 – 2011.6 (Oxford) → Hybrid system (spin–cavity coupling)

⚫ 2011.7 – 2015.3 (Stanford) → Quantum network (InAs QDs)

⚫ 2015.4 – 2019.1 (Keio) → Quantum sensing (diamond NV centers)

⚫ 2019.2 – Present (RIKEN) → Quantum computing (Superconducting quantum circuits)

© Google Earth



“Quantum Computer” in the news

Searched on August 4, around 2 pm 

“Wow, there are lots of
• developments
• interests (both scientific & business)
• debates
• hypes
about quantum computer!”

“Wait, what really is it?”

“Well, it uses quantum effects for 
computation blah blah blah”

“Hum… it sounds like tautology”
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Nobel Prize in Physics, 1973

“for their experimental discoveries regarding 
tunneling phenomena in semiconductors and 
superconductors, respectively”

“for his theoretical predictions of the 
properties of a supercurrent through 
a tunnel barrier, in particular those 
phenomena which are generally 
known as the Josephson effects”

Leo Esaki
(1925–)

© Nobel Foundation

Ivar Giaever
(1929–)

© Nobel Foundation

Brian Josephson
(1940–)

© Nobel Foundation



Nobel Prize in Physics, 1973

Phys. Rev. 109, 603 (1958) Esaki

• Tunnel (Esaki) diode
→ Electron is a WAVE

“for their experimental discoveries regarding 
tunneling phenomena in semiconductors and 
superconductors, respectively”

Leo Esaki
(1925–)

© Nobel Foundation



Resonant tunneling diode → Vertical QD (1996)

Rep. Prog. Phys. 64, 701 (2001) Kouwenhoven et al.

• Single electron transistor
→ Electron is a PARTICLE

From tunnel diode to quantum dot

• Tunnel (Esaki) diode
→ Electron is a WAVE



Lateral double quantum dot

Rep. Prog. Phys. 69, 759 (2006) Fujisawa et al.
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300 nm

L R D
S

Rep. Prog. Phys. 69, 759 (2006) Fujisawa et al.

Lateral double quantum dot

Depleted area

Vg < 0

V.B.

C.B.
GaAsn-AlGaAs

z

EF

2DEG



300 nm

L R D
S

L RL R

A single electron (wavefunction) 
can spread over the two QDs 
(bonding & antibonding states)

Single electron in a double-well potential

Rep. Prog. Phys. 69, 759 (2006) Fujisawa et al.



300 nm

L R D
S

𝜓𝑅 𝒓𝜓𝐿 𝒓

L RL R

න 𝜓𝐿(𝒓)
2𝑑𝒓 = න 𝜓𝑅(𝒓)

2𝑑𝒓 = 1

Single electron in a double-well potential

Rep. Prog. Phys. 69, 759 (2006) Fujisawa et al.

Normalization

Orthogonality

න𝜓𝑅
∗ (𝒓)𝜓𝐿(𝒓)𝑑𝒓 = 0



300 nm

L R D
S

100% 100%

L RL R

Measuring the location of an electron

න 𝜓𝐿(𝒓)
2𝑑𝒓 = න 𝜓𝑅(𝒓)

2𝑑𝒓 = 1

න𝜓𝑅
∗ (𝒓)𝜓𝐿(𝒓)𝑑𝒓 = 0

Normalization

Orthogonality

Rep. Prog. Phys. 69, 759 (2006) Fujisawa et al.



300 nm

L R D
S

L R

𝜓𝐵 𝒓 =
1

2
[𝜓𝐿 𝒓 + 𝜓𝑅 𝒓 ]

Bonding stateන𝜓𝐵
∗ (𝒓)𝜓𝐿(𝒓)𝑑𝒓

2

= 0.5

Born rule

න𝜓𝐵
∗ (𝒓)𝜓𝑅(𝒓)𝑑𝒓

2

= 0.5

Measuring the location of an electron

Rep. Prog. Phys. 69, 759 (2006) Fujisawa et al.



300 nm

L R D
S

L R

50% 50%

න𝜓𝐵
∗ (𝒓)𝜓𝐿(𝒓)𝑑𝒓

2

= 0.5

න𝜓𝐵
∗ (𝒓)𝜓𝑅(𝒓)𝑑𝒓

2

= 0.5

Measuring the location of an electron

Born rule

Rep. Prog. Phys. 69, 759 (2006) Fujisawa et al.



300 nm

L R D
S

L R

𝜓𝐴 𝒓 =
1

2
[𝜓𝐿 𝒓 − 𝜓𝑅 𝒓 ]

න𝜓𝐴
∗(𝒓)𝜓𝐿(𝒓)𝑑𝒓

2

= 0.5

න𝜓𝐴
∗(𝒓)𝜓𝑅(𝒓)𝑑𝒓

2

= 0.5

Measuring the location of an electron

Born rule

Antibonding state

Rep. Prog. Phys. 69, 759 (2006) Fujisawa et al.



300 nm

L R D
S

L R

50% 50%

න𝜓𝐴
∗(𝒓)𝜓𝐿(𝒓)𝑑𝒓

2

= 0.5

න𝜓𝐴
∗(𝒓)𝜓𝑅(𝒓)𝑑𝒓

2

= 0.5

Measuring the location of an electron

Born rule

Rep. Prog. Phys. 69, 759 (2006) Fujisawa et al.



𝜓 𝒓 =
3

2
𝜓𝐿 𝒓 +

1

2
𝜓𝑅 𝒓

300 nm

L R D
S

L R

න𝜓∗(𝒓)𝜓𝐿(𝒓)𝑑𝒓

2

= 0.75

න𝜓∗(𝒓)𝜓𝑅(𝒓)𝑑𝒓

2

= 0.25

Superposition state

Measuring the location of an electron

Born rule

Rep. Prog. Phys. 69, 759 (2006) Fujisawa et al.



300 nm

L R D
S

75% 25%

L R

න𝜓∗(𝒓)𝜓𝐿(𝒓)𝑑𝒓

2

= 0.75

න𝜓∗(𝒓)𝜓𝑅(𝒓)𝑑𝒓

2

= 0.25

Measuring the location of an electron

Born rule

Rep. Prog. Phys. 69, 759 (2006) Fujisawa et al.



300 nm

L R D
S

Ensemble measurement: I = ef

Measuring the location of an electron

Rep. Prog. Phys. 69, 759 (2006) Fujisawa et al.



Can we use the WAVE nature of an electron for computation?

Quantum bit (Qubit)

Measurement determines the electron’s location (Localization = PARTICLE)

Probabilistic

0 10 1

0 1
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Having bits is not enough to do computation

Operations (ops, gates) relevant for qubits?

Quantum gate

?

0 1



NOT is the only nontrivial 1-bit op for classical computation

X (NOT) gate

0 1

X

0 1

X



The same op but we can use a superposition state as input

X (NOT) gate

X

0 1

X

0 1



Z gate

0 1

Z

0 1

Z



Z gate

Z

0 1

Z

0 1



H gate

H

0 1

H

0 1



H

H gate

0 →

1 →

0 1

Interference

H

0 1



Impossible gate

0 1 0 1



Impossible gate

0 →

1 →

0 1

Probability
not conserved

0 1



Possible gates obeying the rule of quantum mechanics
are known as unitary gates (X, H…)

Impossible gate

0 1 0 1



0 =
1
0

1 =
0
1

Vector representation

Superposition state

𝜓 = 𝑎 0 + 𝑏 1 =
𝑎
𝑏

𝑎 2 + 𝑏 2 = 1

Qubit representation

0

1

𝜓 = cos
𝜃

2
0 + sin

𝜃

2
1

𝜃
1

2
( 0 + 1 )

1

2
( 0 − 1 )

“Ket” in the Dirac notation

For now, you may just think 
of it as just a column vector



𝑋 =
0 1
1 0

𝑋 0 =
0 1
1 0

1
0

=
0
1

= 1 𝑋 1 =
0 1
1 0

0
1

=
1
0

= 0

X gate

X

0 1

X

0 1



Z gate

0 1

Z

0 1

Z

𝑍 =
1 0
0 −1

𝑍 0 =
1 0
0 −1

1
0

=
1
0

= 0 𝑍 1 =
1 0
0 −1

0
1

=
0
−1

= − 1



𝐻 =
1

2

1 1
1 −1

𝐻 0 =
1

2

1
1

=
1

2
( 0 + 1 ) 𝐻 1 =

1

2

1
−1

=
1

2
( 0 − 1 )

H gate

H

0 1

H

0 1



𝐻
1

2
( 0 ± 1 ) =

1

2
( 0 + 1 ± 0 ∓ 1 ) = ቊ

0
1

H gate

H

0 1

H

0 1

𝐻 =
1

2

1 1
1 −1

Interference



𝑆 =
1 0
0 𝑖 𝑖 = −1 = quarter rotation, but of course, this is just a cartoon

S gate

𝑆
1

2
( 0 + 1 ) =

1

2
( 0 + 𝑖 1 )

S

0 1

𝑆
1

2
( 0 − 1 ) =

1

2
( 0 − 𝑖 1 )

S

0 1



𝜓 = cos
𝜃

2
0 + 𝑒𝑖𝜙 sin

𝜃

2
1

1

2
( 0 + 1 )

1

2
( 0 − 1 )

𝑎 2 + 𝑏 2 = 1

𝑎, 𝑏 ∈ 𝑪

Qubit representation: Bloch sphere

1

𝜃

x

y
𝜙

z

0

1

2
( 0 − 𝑖 1 )

1

2
( 0 + 𝑖 1 )



00 =

1
0
0
0

Vector representation of 2-qubit system

𝜓 = 𝑎 00 + 𝑏 01 + 𝑐 10 + 𝑑 11 =

𝑎
𝑏
𝑐
𝑑

𝑎 2 + 𝑏 2 + 𝑐 2 + 𝑑 2 = 1

01 =

0
1
0
0

10 =

0
0
1
0

11 =

0
0
0
1

2-qubit system



C
N

O
T

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

CNOT

𝑎
𝑏
𝑐
𝑑

=

𝑎
𝑏
𝑑
𝑐

NOT on 2nd qubit
according to the state of 1st qubit

CNOT gate

00 01 10 11



H2

𝐻2 =
1

2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

𝐻2

1
0
0
0

=
1

2

1
1
1
1

𝐻2 = 𝐻⊗𝐻 =
1

2

𝐻 𝐻
𝐻 −𝐻

cf. Tensor product

H2 gate

00 01 10 11



H2

𝐻2 =
1

2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

𝐻2

0
1
0
0

=
1

2

1
−1
1
−1

H2 gate

00 01 10 11



H2

𝐻2 =
1

2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

𝐻2

0
0
1
0

=
1

2

1
1
−1
−1

H2 gate

00 01 10 11



H2

𝐻2 =
1

2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

𝐻2

0
0
0
1

=
1

2

1
−1
−1
1

H2 gate

00 01 10 11



H2

𝐻2 =
1

2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

𝐻2
1

2

1
1
1
1

=

1
0
0
0

Interference of
16 possible paths

H2 gate

00 01 10 11



0...00 0...01

U

0...10 1...111...10

...

Candidates of 
answers, but may 
contain garbage

...

...

Quantum computation, conceptually

Superposition of 
all possible inputs

...



0...00 0...01

U

0...10 1...111...10

...

...

... (20%...)

Quantum computation, conceptually

You may or may not get an 
answer. Not so happy….

Superposition of 
all possible inputs



0...00 0...01

U

0...10 1...111...10

...

...

Quantum computation, conceptually

Superposition of 
all possible inputs

...

...

Candidates
(2nd trial)



0...00 0...01

U

0...10 1...111...10

...

...

... (15%...)

Quantum computation, conceptually

Superposition of 
all possible inputs

You may or may not get an 
answer. Not so happy….



0...00 0...01

U

0...10 1...111...10

...

...

After computation/before measurement,
we want candidates to be actually an answer (or at least very close to it)

Quantum computation, conceptually

Candidates

Superposition of 
all possible inputs



0...00 0...01

U

0...10 1...111...10

...

...

Quantum computation, conceptually

Superposition of 
all possible inputs

... (100%!)Now you are happy!!

Before 
measurement



• Start from a superposition state (quantum parallelism), unitary-transform it 
into a state where the probability amplitude of the answer state is large 
enough (quantum interference), and measure
→ Deutsch–Jozsa algorithm (next topic)

Quantum computation

• For specific tasks, quantum computers can outperform classical computers, 
but not almighty
→ Scientific American 298, (3) 62 (2008) Aaronson, “The limits of quantum 

computers”

• Algorithms: Data search (Grover), phase estimation (Kitaev), factoring (Shor), 
solving linear equations (Harrow–Hassidim–Lloyd), quantum simulation 
(Feynman) …
→ PRX Quantum 2, 040203 (2021) Martyn et al., “Grand Unification of 

Quantum Algorithms”
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Deutsch–Jozsa algorithm
David Deutsch
© Aya Furuta

Richard Jozsa
© Aya Furuta

The inventors

• The first quantum algorithm that showed the potential of quantum computers
• Deterministic (give a 100% answer)
• Of no practical use
• Easy to see the roles of quantum parallelism and quantum interference



𝑈𝑎

𝑎 = 0,1

𝑈 𝑎

Only n “wires” are required to 
represent n-qubit gates
(2n wires in the left figure)

Quantum circuit

U

0 1

𝑎𝑏𝑐 𝑉 𝑎𝑏𝑐𝑉

𝑎, 𝑏, 𝑐 = 0,1
Not to be confused with “superconducting 
quantum circuit,” which refers to a physical 
device based on circuit QED



𝐻𝑎
1

2
෍

𝑏=0,1

−1 𝑎⋅𝑏 𝑏 =
0 + −1 𝑎 1

2

𝐻 0 =
0 + 1

2

𝐻 1 =
0 − 1

2

𝐻
1
0

=
1

2

1
1

𝐻
0
1

=
1

2

1
−1

𝐻 =
1

2

1 1
1 −1

𝑎 = 0,1

H gate



000 𝐻3 000

=
1

23
෍

𝑎,𝑏,𝑐=0,1

𝑎𝑏𝑐 =
1

23
෍

𝑥=0

23−1

𝑥

=
1

23
( 0 + 1 )( 0 + 1 )( 0 + 1 )

=
1

23
( 000 + 001 + 010 + 011 + 100 + 101 + 110 + 111 )

𝐻3 000

𝐻3

H3 gate



𝐻𝑛 𝑥 =
1

2𝑛
෍

𝑏1=0,1

−1 𝑎1⋅𝑏1 𝑏1 ⋯ ෍

𝑏𝑛=0,1

−1 𝑎𝑛⋅𝑏𝑛 𝑏𝑛

=
1

2𝑛
෍

𝑏1,𝑏2⋯𝑏𝑛

−1 𝑎1⋅𝑏1+𝑎2⋅𝑏2+⋯+𝑎𝑛⋅𝑏𝑛 𝑏1𝑏2⋯𝑏𝑛

=
1

2𝑛
෍

𝑦

−1 𝑥⋅𝑦 𝑦

𝐻𝑛
1

2𝑛
෍

𝑦

−1 𝑥⋅𝑦 𝑦
𝑛

𝑥 ⋅ 𝑦 ≡ 𝑎1 ⋅ 𝑏1 + 𝑎2 ⋅ 𝑏2 +⋯+ 𝑎𝑛 ⋅ 𝑏𝑛

𝑥 = 𝑎1 𝑎2 ⋯ 𝑎𝑛

Hn gate



Definition: Binary function 𝑓(𝑥) is called “constant” if it returns the same 
output (all 0s or all 1s) for all the inputs 𝑥, and is called “balanced” if it 
returns half 0s and half 1s

𝑥 𝑓(𝑥)

0 0

1 0

2 0

3 0

𝑥 𝑓(𝑥)

0 0

1 1

2 1

3 0

𝑥 𝑓(𝑥)

0 0

1 1

2 1

3 1

Constant Balanced Non-of-the-above

Examples:

Deutsch’s problem



Deutsch has a bit-string 𝑓(𝑥) that is known to be either constant or balanced.
How many queries will Newton and Schrödinger have to make in order to 
judge the type (constant or balanced) of 𝑓(𝑥)?

Isaac Newton
By Godfrey Kneller

𝑥 𝑓(𝑥)

0 0

1 0

2 0

3 0
Erwin Schrödinger

©Nobel Foundation

“Classical” query

In the worst case
(# elements/2+1)

times
⋯

“Quantum” query

Always 
only once

Deutsch’s problem



0…0 0
𝐻𝑛 1

2𝑛
෍

𝑥=0

2𝑛−1

𝑥 0
1

2𝑛
෍

𝑥=0

2𝑛−1

𝑥 𝑓(𝑥)
𝐹

0…0 𝐻𝑛
𝑛

𝐹

0

𝐻𝑛

𝑍

𝐹

𝑍 1

2𝑛
෍

𝑥=0

2𝑛−1

−1 𝑓(𝑥) 𝑥 𝑓(𝑥)
Encode the info on 𝑓(𝑥)
into the phase

𝑍 𝑎 = −1 𝑎 𝑎

Deutsch–Jozsa algorithm

𝐹 𝑥 𝑎 = 𝑥 𝑎 ⊕ 𝑓(𝑥)
Entangled state carrying 
all the info on 𝑓(𝑥)

Work bit
Register 
bit



1

2𝑛
෍

𝑥=0

2𝑛−1

−1 𝑓(𝑥) 𝑥 0
𝐹1

2𝑛
෍

𝑥=0

2𝑛−1

−1 𝑓(𝑥) 𝑥 𝑓(𝑥)

Erase the info on 𝑓(𝑥)
from the work bit

𝐻𝑛 ෍

𝑦

෍

𝑥

−1 𝑓 𝑥 +𝑥⋅𝑦

2𝑛
𝑦 0 𝐻𝑛 𝑥 =

1

2𝑛
෍

𝑦

−1 𝑥⋅𝑦 𝑦

0…0 𝐻𝑛
𝑛

𝐹

0

𝐻𝑛

𝑍

𝐹

Deutsch–Jozsa algorithm

𝐹 𝑥 𝑎 = 𝑥 𝑎 ⊕ 𝑓(𝑥)



Probablity amplitude of returning to |000...〉

෍

𝑥=0

3
−1 𝑓 𝑥

2𝑛
=

−1 0 + −1 0 + −1 0 + −1 0

4
= 1

n = 2, constant Constructive interference

෍

𝑥=0

3
−1 𝑓 𝑥

2𝑛
=

−1 0 + −1 1 + −1 1 + −1 0

4
= 0

n = 2, balanced Destructive interference

Deutsch–Jozsa algorithm

෍

𝑥=0

2𝑛−1
−1 𝑓 𝑥 +𝑥⋅0

2𝑛
=

±1

0

(Constant)

(Balanced)



2-bit 𝑓(𝑥)

𝑥 𝑎𝑏
Constant Balanced (4C2 = 6)

𝑓c0 𝑓c1 𝑓b0 𝑓b1 𝑓b2 𝑓b3 𝑓b4 𝑓b5

0 00 0 1 0 0 0 1 1 1

1 01 0 1 0 1 1 1 0 0

2 10 0 1 1 0 1 0 1 0

3 11 0 1 1 1 0 0 0 1

𝑓b0(𝑥) = 𝑎

𝑓b1(𝑥) = 𝑏

𝑓b2 𝑥 = 𝑎 ⊕ 𝑏

𝑓b3(𝑥) = ത𝑎

𝑓b4(𝑥) = ത𝑏

𝑓b5 𝑥 = 𝑎 ⊕ 𝑏

𝑓c0(𝑥) = 0

𝑓c1(𝑥) = 1

Homework 1

Constrict all the 2-bit 𝐹 gates using only Xs (NOTs) and CNOTs
Note: 2-bit 𝐹 gates are 3Q gates
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1. A scalable physical system with well characterized qubits

2. The ability to initialize the state of the qubits to a simple fiducial state, 
such as |000...〉

3. Long relevant decoherence times, much longer than the gate 
operation time

4. A “universal” set of quantum gates

5. A qubit-specific measurement capability

David DiVincenzo
©RWTH Aachen U.

Fortschr. Phys. 48, 771 (2000) DiVincenzo

DiVincenzo’s criteria

Universal

• 1Q gates + CNOT (can construct arbitrary n-qubit gates)
• T, H, S + CNOT (can approximate arbitrary n-qubit gates with arbitrary accuracy)

𝑆 = 𝑇2 =
1 0
0 𝑖

𝑇 =
1 0
0 𝑒𝑖𝜋/4

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

𝐻 =
1

2

1 1
1 −1

Clifford gates



• Encode quantum information into the phase and extract the 
answer by using quantum interference
→ Quantum coherence must be preserved during computation

Difficulty of quantum computation

experimental

Phys. Lett. A 217, 188 (1996) Landauer

Rolf Landauer
(1927–1999)

©IEEE



• Encode quantum information into the phase and extract the 
answer by using quantum interference
→ Quantum coherence must be preserved during computation

Difficulty of quantum computation

experimental

Nature 400, 720 (1999) Lloyd

Landauer’s footnote
(…) all papers on quantum computing should carry a footnote: 
“This proposal, like all proposals for quantum computation, 
relies on speculative technology, does not in its current form 
take into account all possible sources of noise, unreliability 
and manufacturing error, and probably will not work.”

Rolf Landauer
(1927–1999)

©IEEE



• Encode quantum information into the phase and extract the 
answer by using quantum interference
→ Quantum coherence must be preserved during computation

• Quantum states cannot be copied (no-cloning theorem)
→ Quantum error correction & fault-tolerant quantum computation

Difficulty of quantum computation

experimental

Landauer’s view on QEC
(...) progress has been made toward error reduction, and we can cite only a 
sample of the material on its way [21]. This is far more progress in fact than 
this author thought possible, but not enough to permit computation. (...) 
Undoubtedly, further progress will be made, but victory is not yet in sight.

Phys. Lett. A 217, 188 (1996) Landauer

[21] C.H. Bennett, D.P. DiVincenzo, J.A. Smolin and W.K. Wootters, Mixed state entanglement and quantum error correction, Phys. Rev. A., to be published;
R. Laflamme, C. Miquel, J.-P. Paz and W.H. Zurek, Perfect quantum error correction code, to be published;
P. Shor, Phys. Rev. A. 52 (1995) 2493.



There exists no unitary gate that realizes 𝑈 𝜓 0 = 𝜓 𝜓 for 
an arbitrary state 𝜓

Nature 299, 802 (1982) Wootters & Zurek

No-cloning theorem



𝑈 0 0 = 0 0

𝑈 1 0 = 1 1

Proof: If such 𝑈 exits…

𝜓

𝑈 𝑎 0 + 𝑏 1 0 = 𝑎𝑈 0 0 + 𝑏𝑈 1 0

≠ 𝑎 0 + 𝑏 1 𝑎 0 + 𝑏 1

= 𝑎 0 0 + 𝑏 1 1

No-cloning theorem

There exists no unitary gate that realizes 𝑈 𝜓 0 = 𝜓 𝜓 for 
an arbitrary state 𝜓
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Electron spin

Intrinsic, quantum mechanical angular momentum of an electron S = ½ (ms = ± ½)

𝐻𝑍 =
𝑔𝜇𝐵𝐵0
ℏ

𝑆𝑧

Hamiltonian & energy levels

B0 = 0

B0 > 0

𝐻𝑧| ۧ↑ =
𝑔𝜇𝐵𝐵0
2

| ۧ↑

𝐻𝑧| ۧ↓ = −
𝑔𝜇𝐵𝐵0
2

| ۧ↓

𝑆𝑧| ۧ↑ =
ℏ

2
| ۧ↑

𝑆𝑧| ۧ↓ = −
ℏ

2
| ۧ↓



Quantum coherence

0 ≡ ↓ 1 ≡ ↑

In many cases, the spin dynamics can be described 
phenomenologically (Bloch equation)

𝜓 = 𝛼 0 + 𝛽|1〉



𝑑𝝁

𝑑𝑡
= 𝝁 × 𝛾𝑩0

Torque equation

Magnetic moment: 𝝁 = 𝛾𝑱

Gyromagnetic ratio (𝑔𝜇𝐵)

𝑥

Rest frame:
Seen to rotate at γB0

ො𝑥Ω

Frame rotating at angular velocity Ω:
Rotate slower…why?

Larmor precession

B0

γB0

DC field

μ



Larmor precession

DC field along the z direction becomes weaker

𝐵0

Ƹ𝑧

ො𝑥

Ω

𝛾

𝑥

Rest frame:
Seen to rotate at γB0

ො𝑥Ω

Frame rotating at angular velocity Ω:
Rotate slower…why?

B0

γB0

DC field

μ



𝐵eff = 𝐵1 ො𝑥 + 𝐵0 −
Ω

𝛾
Ƹ𝑧

Effective magnetic fieldΩ

𝛾

𝐵0

Ƹ𝑧

𝐵1

ො𝑥

AC field rotating in the xy plane at Ω

Spin resonance

DC field along the z direction becomes weaker

𝑥

Rest frame:
Seen to rotate at γB0

ො𝑥Ω

Frame rotating at angular velocity Ω:
Rotate slower…why?

B0

γB0

DC field

μ



Spin resonance

𝐵1
ො𝑥

𝝁

Frame rotating at Ω = γB0

𝜇 Ƹ𝑧 (𝑡 = 0)

π/2 pulse

𝜇 ො𝑦 (𝑡 = 1/4𝛾𝐵1)

π pulse

−𝜇 Ƹ𝑧 (𝑡 = 1/2𝛾𝐵1)
• Rotation on the Bloch sphere

• Rotations about the ±ො𝑥,±ො𝑦 axes are realized by 
adjusting the microwave phases

cos
𝜃

2
↓ + 𝑒𝑖𝜙 sin

𝜃

2
↑

𝜃

x

y
𝜙

z
↓

↑

↓ + 𝑖 ↑

2
→ =

↓ + ↑

2

← =
↓ − ↑

2



Spin relaxation: T1 & T2

𝑑𝝁

𝑑𝑡
= 𝝁 × 𝛾𝑩0 −

𝝁∥ − 𝝁0
𝑇1

−
𝝁⊥
𝑇2

Bloch equation

Felix Bloch
(1905–1983)

©Nobel Foundation

1

𝑇2
=

1

2𝑇1
+
𝛾2

2
න
−∞

∞

𝑏𝑧 𝜏 𝑏𝑧 0 𝑑𝜏

Phase relaxation (Change the precession frequency)
τ

𝜔0 + 𝛿𝜔

𝝁

B0+bz

1

𝑇1
=
𝛾2

2
න
−∞

∞

𝑏𝑥 𝜏 𝑏𝑥 0 + 𝑏𝑦 𝜏 𝑏𝑦 0 cos(𝜔0𝜏) 𝑑𝜏

Energy relaxation (Change the direction of a spin)

𝝁

bx,y

→ Incoherent process (Error!)



Spin relaxation: T1 & T2

Appl. Phys. Rev. 6, 021318 (2019) Krantz et al.

𝜇⊥

𝑡

∝ 𝑒
−
𝑡
𝑇2

𝜇∥

𝑡

𝜇0
∝ 1 − 𝑒

−
𝑡
𝑇1

𝑑𝝁

𝑑𝑡
= 𝝁 × 𝛾𝑩0 −

𝝁∥ − 𝝁0
𝑇1

−
𝝁⊥
𝑇2

Bloch equation
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Errors in quantum circuits

𝜓 𝑒0

Coupling with the environment

Basic ideas of quantum error correction

• Continuous errors can be discretized by measurements
• Any 1Q errors are correctable as long as we can detect & correct 

bit-flip (X), phase-flip (Z), phase–bit-flip (XZ) errors

𝜓 𝑒𝐼 + 𝑋 𝜓 𝑒𝑋 + 𝑍 𝜓 𝑒𝑍 + 𝑋𝑍 𝜓 𝑒𝑌
𝑈E

𝑋Bit-flip error

Phase-flip error 𝑍

𝜓 = 𝛼 0 + 𝛽 1

𝑋 =
0 1
1 0

𝑍 =
1 0
0 −1

𝑋𝑍 =
0 −1
1 0

= −𝑖𝑌



Check

𝑈E 𝜓 𝑒0 = 𝜓 𝑒𝐼 + 𝑋 𝜓 𝑒𝑋 + 𝑍 𝜓 𝑒𝑍 + 𝑋𝑍 𝜓 𝑒𝑌

𝑈E 0 𝑒0 = 0 𝑒00 + 1 𝑒10

𝑈E 1 𝑒0 = 0 𝑒01 + 1 𝑒11

𝑈E 𝛼 0 + 𝛽 1 𝑒0 = 𝛼 0 𝑒00 + 𝛼 1 𝑒10 + 𝛽 0 𝑒01 + 𝛽 1 𝑒11L.H.S

𝛼 0 + 𝛽 1 𝑒𝐼 + 𝛼 1 + 𝛽 0 𝑒𝑋 + 𝛼 0 − 𝛽 1 𝑒𝑍 + 𝛼 1 − 𝛽 0 𝑒𝑌

= 𝛼 0 𝑒𝐼 + 𝑒𝑍 + 𝛼 1 𝑒𝑋 + 𝑒𝑌 + 𝛽 0 𝑒𝑋 − 𝑒𝑌 + 𝛽 1 𝑒𝐼 − 𝑒𝑍

R.H.S.

𝑒𝐼,𝑍 =
𝑒00 ± 𝑒11

2
𝑒𝑋,𝑌 =

𝑒10 ± 𝑒01
2



CNOT & X gate

𝑋𝑋

𝑋

𝑋

𝑋

𝐶12𝑋2 𝑎 𝑏 = 𝐶12 𝑎 𝑏 ⊕ 1

= 𝑎 𝑎 ⊕ 𝑏⊕ 1

𝑋2𝐶12 𝑎 𝑏 = 𝑋2 𝑎 𝑎 ⊕ 𝑏

= 𝑎 𝑎 ⊕ 𝑏⊕ 1

𝐶12𝑋1 𝑎 𝑏 = 𝐶12 𝑎 ⊕ 1 𝑏

= 𝑎 ⊕ 1 𝑎 ⊕ 𝑏⊕ 1

𝑋1𝑋2𝐶12 𝑎 𝑏 = 𝑋1𝑋2 𝑎 𝑎 ⊕ 𝑏

= 𝑎 ⊕ 1 𝑎 ⊕ 𝑏⊕ 1



CNOT & Z gate

𝑍 𝑍

𝑍𝑍

𝑍

Homework 2

Verify the above circuit relations using

𝐶12 𝑎 𝑏 = 𝑎 𝑎 ⊕ 𝑏

𝑍 𝑎 = −1 𝑎 𝑎



𝜓 00 = 𝛼 0 + 𝛽 1 00

𝜓 𝐿 = 𝛼 000 + 𝛽 111

Encode Decode Detection & Correction

𝜓

0

0

𝑋 𝜓

𝑥

𝑦

Apply 𝑋

𝑥𝑦 = 1

𝑋

Detection & correction of bit-flip error



𝑥𝑦 = 0

𝜓 00 = 𝛼 0 + 𝛽 1 00

𝜓 𝐿 = 𝛼 000 + 𝛽 111

𝜓

0

0

𝐼 𝜓

𝑥

𝑦

Detection & correction of bit-flip error

Encode Decode Detection & Correction



𝜓

0

0

𝑋 𝜓

𝑥

𝑦

𝑥𝑦 = 1

𝑋

𝜓 00 = 𝛼 0 + 𝛽 1 00

𝜓 𝐿 = 𝛼 000 + 𝛽 111 𝛼 100 + 𝛽 011
BFE1

(𝛼 1 + 𝛽 0 ) 11

Detection & correction of bit-flip error

Encode Decode Detection & Correction



𝜓

0

0

𝑋 𝜓

𝑥

𝑦

𝑥𝑦 = 1

𝑋

𝑋

𝑋

𝜓 00 = 𝛼 0 + 𝛽 1 00

𝜓 𝐿 = 𝛼 000 + 𝛽 111

(𝛼 1 + 𝛽 0 ) 11

𝛼 100 + 𝛽 011
BFE1

Error propagation
→ No need to measure 𝜓 itself

Detection & correction of bit-flip error

Encode Decode Detection & Correction



𝜓

0

0

𝑋 𝜓

𝑥

𝑦

𝑋

𝜓 00 = 𝛼 0 + 𝛽 1 00

𝜓 𝐿 = 𝛼 000 + 𝛽 111 𝛼 010 + 𝛽 101
BFE2

(𝛼 0 + 𝛽 1 ) 10

𝑥𝑦 = 0

Detection & correction of bit-flip error

Encode Decode Detection & Correction



𝜓

0

0

𝐼 𝜓

𝑥

𝑦

𝑥𝑦 = 0

𝑋

𝜓 00 = 𝛼 0 + 𝛽 1 00

𝜓 𝐿 = 𝛼 000 + 𝛽 111

(𝛼 0 + 𝛽 1 ) 10

𝛼 010 + 𝛽 101
BFE2

Detection & correction of bit-flip error

Encode Decode Detection & Correction



Encode Decode

𝜓 00 = 𝛼 0 + 𝛽 1 00

𝛼 000 + 𝛽 111 𝜓 𝐿 = 𝛼 ++ + + 𝛽 −− − ± ≡
0 ± 1

2

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻𝜓

0

0

𝑋 𝜓

𝑥

𝑦𝑍

Detection & correction of phase-flip error



𝜓 00 = 𝛼 0 + 𝛽 1 00

𝛼 000 + 𝛽 111 𝜓 𝐿 = 𝛼 ++ + + 𝛽 −− − ± ≡
0 ± 1

2

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻𝜓

0

0

𝑋 𝜓

𝑥

𝑦

𝑍

Detection & correction of phase-flip error

Encode Decode



Converted into bit-flip error

𝐻𝑍𝐻 = 𝑋

𝐻𝐻 = 𝐼

𝜓

0

0

𝑋 𝜓

𝑥

𝑦

𝑋

Detection & correction of phase-flip error

Homework 3

Verify 𝐻𝑍𝐻 = 𝑋,𝐻𝐻 = 𝐼 using

𝐻 𝑎 =
1

2
෍

𝑏=0,1

−1 𝑎⋅𝑏 𝑏

𝑍 𝑎 = −1 𝑎 𝑎

𝑋 𝑎 = 𝑎 + 1 = ത𝑎



Detection & correction of phase-flip error

𝜓

0

0

𝑋 𝜓

𝑥

𝑦
𝑋

𝑋

𝑋

It is inefficient to decode every time…
Can we keep logical qubits throughout 

computation & error correction?

Converted into bit-flip error

𝐻𝑍𝐻 = 𝑋

𝐻𝐻 = 𝐼



Syndrome measurement

Measurement of Operator 𝑀

𝑀2 = 𝐼

𝑃± =
𝐼 ± 𝑀

2

𝑀𝑃± 𝜓 = ±𝑃± 𝜓Self-adjoint

Projector: 𝑃± 𝜓 are eigenstates of 𝑀 with eigenvalues 𝜆 = ±1

𝑀

𝐻

𝜓

0 𝐻

0 𝜓
1

2
0 + 1 𝜓

1

2
0 𝜓 + 1 𝑀 𝜓

1

2
0 + 1 𝜓 + 0 − 1 𝑀 𝜓 0 𝑃+ 𝜓 + 1 𝑃− 𝜓



Syndrome meas. (Shor code)

0 L =
1

2 2
000 + 111 000 + 111 000 + 111

1 L =
1

2 2
000 − 111 000 − 111 000 − 111

𝜓 L = 𝛼 0 L + 𝛽 1 LLogical qubit

𝑀1𝑋1 𝜓 L = −𝑋1𝑀1 𝜓 L = −𝑋1 𝜓 L

𝑀𝑖≠1𝑋1 𝜓 L = 𝑋1𝑀𝑖≠1 𝜓 L = 𝑋1 𝜓 L

Example) Bit-flip on Q1

𝑀1 = 𝑍1𝑍2

𝑀2 = 𝑍2𝑍3

𝑀7 = 𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6

𝑀4 = 𝑍5𝑍6

𝑀5 = 𝑍7𝑍8

𝑀6 = 𝑍8𝑍9

𝑀3 = 𝑍4𝑍5

𝑀8 = 𝑋4𝑋5𝑋6𝑋7𝑋8𝑋9

Error syndrome

• Logical qubits satisfy 𝑀𝑖 𝜓 L = 𝜓 L with 𝜆 = 1

• At least one of 𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖 anti-commutes with 𝑀𝑖

• 𝑀𝑖𝑀𝑗 = 𝑀𝑗𝑀𝑖 (simultaneous observable)

• Errors are detected by the parity change



0 ⊗8

𝜓

0 ⊗9

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝑍

𝑍 𝑍

𝑍

𝑍

𝑍 𝑍

𝑍

𝑍

𝑍 𝑍

𝑍

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋
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Q-circuit for Shor code



Surface code
Phys. Rev. A 86, 032324 (2012) Fowler et al.

• 2D lattice
• Nearest-neighbor coupling
• High error-tolerance (~1%)

Nature 508, 500 (2014) Barends et al.



Contents

• Quantum computation
– From an electron in a double-well potential to qubit
– Quantum gates
– Deutsch–Jozsa algorithm

• Quantum error correction
– DiVincenzo’s criteria and the need of QEC
– Spin, spin resonance, and spin relaxation
– Basics of quantum error correction

• Superconducting quantum circuits
– Circuit QED and transmon
– Quantum control
– Recent experiments by Google and ETH



Cavity QED (Quantum ElectroDynamics)

Cs atoms

Mirror surface

Mirror substrate

Probe laser

Detector

Optical cavity: Kimble group (Caltech)

Science 287, 1447 (2000) Hood et al.
Nature 453, 1023 (2008) Kimble

Interaction between an atom & a photon confined in a cavity

Rev. Mod. Phys. 85, 1083 (2013) Haroche

Microwave source

Atom source

Detector

Cavity “Photon box”

“Flying” Ryderg atoms

Microwave cavity: Haroche group (ENS)

Serge Haroche
(1944–)

©Nobel Foundation

3 mm

10 µm

Physics Today 49, (8) 51 (1996) Haroche & Raimond 
“Quantum Computing: Dream or Nightmare?”



Circuit QED

Artificial atom–µwave photon interaction in superconducting quantum circuits

✓ System stability (an artificial atom “transmon” doesn’t move)
✓ Design flexibility
✓ Size & scalability

Phys. Rev. Lett. 107, 240501 (2011) Paik et al.

Nature 431, 162 (2004) Wallraff et al.

Rev. Mod. Phys. 93, 025005 (2021) Blais et al.
Phys. Rev. A 69, 062320 (2004) Blais et al.

Transmon

µwave photon



Harmonic oscillator & LC circuit

𝐻 =
𝑝2

2𝑚
+
1

2
𝑘𝑥2 𝐻 =

𝑄2

2𝐶
+
Φ2

2𝐿

CLm

k

Hamiltonian

Φ Q
++++++

−−−−−−

x

p

[ ො𝑥, Ƹ𝑝] = 𝑖ℏ ෡Φ, ෠𝑄 = 𝑖ℏQuantization

𝜔 =
𝑘

𝑚
𝜔 =

1

𝐿𝐶
𝐸𝑛 = ℏ𝜔

1

2
+ 𝑛

Energy levels



Harmonic oscillator = Qubit?

0

1

2

3

E01

E12

E23

E01 = E12 = E23

𝐸𝑛 = ℏ𝜔
1

2
+ 𝑛



Harmonic oscillator = Qubit?

0

1

2

3

µwave pulse

E01 = E12 = E23

E01

E12

E23

Resonant on all transitions
(Nonselectivity to 2-level)

Need of anharmonicity

𝑎, 𝑎† = 1

𝑎†: Creation op.

𝑎 : Annihilation op.

Bosonic field

𝐸𝑛 = ℏ𝜔
1

2
+ 𝑛



Josephson junction

Superconductor

Insulating oxide
φ

N

Ψ1 Ψ2

SC1 SC2

𝐼 = 𝐼c sin𝜑

𝑉 = −
ℏ

2𝑒

𝑑𝜑

𝑑𝑡

Josephson equation

𝑉 = −
ℏ

2𝑒𝐼c

1

1 − 𝐼/𝐼c
2

𝑑𝐼

𝑑𝑡

𝐿J

(Only) nonlinear, dissipationless inductor

𝑈 = −න𝐼𝑉𝑑𝑡 = න
ℏ𝐼c
2𝑒

sin𝜑
𝑑𝜑

𝑑𝑡
𝑑𝑡 = −𝐸J cos𝜑

Particle-# diff. & phase diff.
of macroscopic wavefunction

B. Josephson
(1940–)

© Nobel Foundation



Josephson junction

CJLJ

𝑈 = −න𝐼𝑉𝑑𝑡 = න
ℏ𝐼c
2𝑒

sin𝜑
𝑑𝜑

𝑑𝑡
𝑑𝑡 = −𝐸J cos𝜑

Superconductor

Insulating oxide

𝑉 = −
ℏ

2𝑒𝐼c

1

1 − 𝐼/𝐼c
2

𝑑𝐼

𝑑𝑡

𝐿J

(Only) nonlinear, dissipationless inductor

𝐼 = 𝐼c sin𝜑

𝑉 = −
ℏ

2𝑒

𝑑𝜑

𝑑𝑡

Josephson equation

B. Josephson
(1940–)

© Nobel Foundation



Anharmonic oscillator = Qubit

E23

E12

E01

0

1
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E01 > E12 > E23



E01

0

1

2

3

Anharmonic oscillator = Qubit

E01 > E12 > E23



Ever improving T1 & T2

Annu. Rev. Condens. Matter Phys. 11, 369 (2020) Kjaergaard et al.



Ever improving T1 & T2

(CPB) Nature 398, 786 (1999) Nakamura et al.

(CPB) Nature 431, 162 (2004)
Wallraff et al.

(2D Transmon) Nature 449, 328 (2007) Houck et al.

(3D Transmon) Phys. Rev. Lett. 107, 240501 (2011) Paik et al.

250 µm

Charge qubit: The bigger, the better coherence

Annu. Rev. Condens. Matter Phys. 11, 369 (2020) Kjaergaard et al.



Charge qubit

𝐻 = 4𝐸C 𝑁 − 𝑛g
2
− 𝐸J cos𝜑

Cooper-pair box

Cg

Vg

Hamiltonian

𝑒2

2𝐶Σ

Charging energy

Charge offset

1

2
෍

𝑁=−∞

∞

( 𝑁 + 1 𝑁 + 𝑁 𝑁 + 1 )

ො𝜑, ෡𝑁 = 𝑖ℏ

𝜑 =
1

2𝜋
෍

𝑁=−∞

∞

𝑒𝑖𝜑𝑁 𝑁

0 1 2−2 −1

Nφ



Charge qubit

Cooper-pair box

Cg

Vg

Cooper-pair tunneling = 1D tight-binding model

=
1

2
෍

𝑁=−∞

∞

( 𝑁 + 1 𝑁 + 𝑁 𝑁 + 1 ) 𝜑

=
𝑒−𝑖𝜑 + 𝑒𝑖𝜑

2

1

2𝜋
෍

𝑁=−∞

∞

𝑒𝑖𝜑𝑁 𝑁

=
1

2 2𝜋
෍

𝑁=−∞

∞

𝑒𝑖𝜑(𝑁−1) 𝑁 + 𝑒𝑖𝜑(𝑁+1) 𝑁

=
1

2 2𝜋
෍

𝑁=−∞

∞

𝑒𝑖𝜑𝑁 𝑁 + 1 + ෍

𝑁=−∞

∞

𝑒𝑖𝜑𝑁 𝑁 − 1

=
1

2 2𝜋
෍

𝑁=−∞

∞

෍

𝑁′=−∞

∞

𝑁′ + 1 𝑁′ + 𝑁′ − 1 𝑁′ 𝑒𝑖𝜑𝑁 𝑁

cos𝜑 𝜑



Charge qubit

Cg

Vg

Rev. Mod. Phys. 93, 025005 (2021) Blais et al.

Anharmonicity SmallLarge

𝐻 = 4𝐸C 𝑁 − 𝑛g
2
− 𝐸J cos𝜑

Cooper-pair box



Charge qubit

Cg

Vg

Rev. Mod. Phys. 93, 025005 (2021) Blais et al.

C-noise immunity LargeSmall

Anharmonicity SmallLarge

𝐻 = 4𝐸C 𝑁 − 𝑛g
2
− 𝐸J cos𝜑

𝜔p = 8𝐸C𝐸J

8𝐸C ↔ 𝐶 −1

𝐸J ↔ 𝐿 −1

𝜔p

𝐻 ≈
1

2
(8𝐸C)𝑁

2 +
1

2
𝐸J𝜑

2

𝐸J
𝐸C

≫ 1

Charge noise

Cooper-pair box



Charge qubit

Rev. Mod. Phys. 93, 025005 (2021) Blais et al.

𝜔p = 8𝐸C𝐸J

8𝐸C ↔ 𝐶 −1

𝐸J ↔ 𝐿 −1

𝐻 = 4𝐸C 𝑁 − 𝑛g
2
− 𝐸J cos𝜑

𝐻 ≈
1

2
(8𝐸C)𝑁

2 +
1

2
𝐸J𝜑

2

𝐸J
𝐸C

≫ 1

𝜔p

(Transmission-line shunted 
plasma oscillation qubit)

C-noise immunity LargeSmall

Anharmonicity SmallLarge

Shunt capacitor

Transmon



Charge qubit

Rev. Mod. Phys. 93, 025005 (2021) Blais et al.

𝜔p

φm

k

x

p

Large anharmonicity

Shunt capacitor

(Transmission-line shunted 
plasma oscillation qubit)

Transmon



Charge qubit

Rev. Mod. Phys. 93, 025005 (2021) Blais et al.

𝜔p

φM

Small anharmonicity

k

x

p

Shunt capacitor

(Transmission-line shunted 
plasma oscillation qubit)

Transmon



Strong coupling regime

𝐻JC = 𝜔q

𝜎𝑧
2
+ 𝜔r𝑎

†𝑎 + 𝑔(𝜎+𝑎 + 𝜎−𝑎
†)

Qubit

1 = e

0 = g

Cavity (Resonator)

𝑛 = 0

1

2

3

g, 0

g, 1

g, 2

g, 3

e, 0

e, 1

e, 2

e, 3

𝜔q = 𝜔r

Resonance: Δ ≡ 𝜔q − 𝜔r = 0

Vacuum Rabi splitting 

2𝑔

2𝑔 𝑛 + 1

𝑔 ≫ 𝜅, 𝛾 → Strong coupling
Ψ𝑛±,Δ=0 =

1

2
g, 𝑛 + 1 ± e, 𝑛

𝜔𝑛±,Δ=0 = 𝜔r 𝑛 +
1

2
± 𝑔 𝑛 + 1

Jaynes–Cummings Hamiltonian



Observation of vacuum Rabi splitting

Nature 431, 162 (2004) Wallraff et al.



Observation of vacuum Rabi splitting

Nature 454, 315 (2008) Fink et al.
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Device parameters
Fixed-frequency Frequency-tunable

Company/Institution IBM*1 RIKEN*3 Google*4 ETH*6

Number of qubits on a chip 127 64 74 17

Qubit frequency (GHz) 5.06 7.88 5.98/5.97*5 3.95/4.73*7

Anharmonicity (GHz) −0.307 −0.385 −0.265 −0.177

Resonator frequency (GHz) 6.51*2 9.44 4.79 6.98*8

T1 (µs) 98.2 24.8 20.6 32.5

T2 (µs) 93.6 32.2 30.9 47.0

*1: https://quantum-computing.ibm.com/services/resources?system=ibm_washington (Avg. Calibrated regularly)
*2: Nature 567, 209 (2019) Havlicek et al. (Avg. resonator freq. of a 5Q device)
*3: Avg. of 56–63Q (depending on the parameters)
*4: arXiv:2207.06431v2 Google Quantum AI (Avg. of 49Q)
*5: Operating freq./Freq. at readout
*6: Nature 605, 669 (2022) Krinner et al. (Avg. of 17Q except qubit & readout frequencies)
*7: Idle freq./Freq. at readout. Avg. of 9Q (data qubit)
*8: Avg. of 9Q (data qubit)

© Carl De Torres of StoryTK for IBM © ETH Zurich /
Quantum Device Lab

© Google© A. van Loo



𝜒 =
𝑔2

Δ

Readout in the dispersive regime

𝐻JC = 𝜔q

𝜎𝑧
2
+ 𝜔r𝑎

†𝑎 + 𝑔(𝜎+𝑎 + 𝜎−𝑎
†)

𝐻JC
disp

= 𝜔q + 𝜒
𝜎𝑧
2
+ 𝜔r + 𝜒𝜎𝑧 𝑎†𝑎

|Δ| = |𝜔q − 𝜔r| ≫ 𝑔, 𝜅

Frequency (GHz)

𝜔r

𝜒 𝜒

𝜅

|g〉 |e〉

M
ag

n
it

u
d

e
P

h
as

e

→ Measurement of qubit state via cavity

e.g.
fq = 8 GHz
fr = 10 GHz
κ = 10 MHz (Q = 1000)
g = 100 MHz
2χ = 10 MHz 

QND



1Q rotation gate

𝐻d(𝑡) = 𝐸𝑑 𝑡 (𝑎†𝑒−𝑖𝜔d𝑡 + 𝑎𝑒𝑖𝜔d𝑡)

Hamiltonian of external fields (µwave pulse)

𝐻1q
rot = 𝜔r − 𝜔d + 𝜒𝜎𝑧 𝑎†𝑎 + 𝜔q − 𝜔d + 𝜒

𝜎𝑧
2
+ 𝐸𝑑 𝑡 𝑎† + 𝑎 + ΩR

𝜎𝑥
2

ΩR =
2𝐸𝑑 𝑡 𝑔

Δ

y

x

z

𝑅𝑧 𝜑 = 𝑒−𝑖𝜑𝜎𝑧 = 𝑒−𝑖𝜑 0
0 𝑒𝑖𝜑

“Virtual” z-rotation is realized by shifting the LO phase

𝑅𝑦 𝜑 = 𝑒−𝑖𝜑𝜎𝑦 =
cos𝜑 − sin𝜑
sin 𝜑 cos𝜑

In experiments, the rotation axis is set 
by the LO phase

𝑅𝑥 𝜑 =
ΩR𝜏

2
= 𝑒−𝑖ΩR

𝜎𝑥
2
𝜏

=

cos
ΩR𝜏

2
−𝑖 sin

ΩR𝜏

2

−𝑖 sin
ΩR𝜏

2
cos

ΩR𝜏

2



ZY decomposition

𝑈 =
𝑒𝑖(𝛼−𝛽/2−𝛿/2) cos

𝛾

2
−𝑒𝑖(𝛼−𝛽/2+𝛿/2) sin

𝛾

2

𝑒𝑖(𝛼+𝛽/2−𝛿/2) sin
𝛾

2
𝑒𝑖(𝛼+𝛽/2+𝛿/2) cos

𝛾

2

Arbitrary 1Q gates can be realized by a combination of z & y rotations

= 𝑒𝑖𝛼 𝑒−𝑖𝛽/2 0
0 𝑒𝑖𝛽/2

cos
𝛾

2
−sin

𝛾

2

sin
𝛾

2
cos

𝛾

2

𝑒−𝑖𝛿/2 0
0 𝑒𝑖𝛿/2

→ Decomposition is not unique



2Q cross-resonance (CR) gate

𝐻2q = 𝜔q1

𝜎𝑧
1

2
+ 𝜔q2

𝜎𝑧
2

2
+ 𝐽(𝜎+

1𝜎−
2 + 𝜎−

1𝜎+
2)

Hamiltonian of coupled 2Q system

Hqq 𝐻𝐽

𝐻d
rot,CR = 𝜔d

𝜎𝑧
1

2
+
𝜎𝑧
2

2

Rotating frame (𝐻d
rot,CR)

𝐻2q
rot = 𝜔q1 − 𝜔d +

𝐽2

Δqq

𝜎𝑧
1

2
+ 𝜔q2 − 𝜔d −

𝐽2

Δqq

𝜎𝑧
2

2
+ 𝐸q 𝑡 𝜎𝑥

1 + ΩCR𝜎𝑧
1𝜎𝑥

2

Δqq ≡ 𝜔q1 − 𝜔q2

Δqq ≫ 𝐽

ΩCR =
𝐸q 𝑡 𝐽

Δqq

Similar to 1Q gate

Q1 Q2

𝜔q2



CNOT from CR

𝑈CR 𝜃 = ΩCR𝜏 = 𝑒−𝑖𝐻d
rot𝜏 =

cos𝜃 −𝑖 sin 𝜃 0 0
−𝑖 sin 𝜃 cos 𝜃 0 0

0 0 cos 𝜃 𝑖 sin 𝜃
0 0 𝑖 sin 𝜃 cos 𝜃

𝐻d
rot = ΩCR𝜎𝑧

1𝜎𝑥
2𝜔d = 𝜔q2 −

𝐽2

Δqq

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

𝑅𝑧 −
𝜋

2

𝑅𝑥 −
𝜋

2
𝑈CR

𝜋

2

𝑈CR
𝜋

2
=

1

2

1 −𝑖 0 0
−𝑖 1 0 0
0 0 1 𝑖
0 0 𝑖 1
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Quantum supremacy experiment by Google

Nature 574, 505 (2019) Arute et al.

77 authors

53 qubits 

John Martinis



Quantum supremacy experiment by Google

Nature 574, 505 (2019) Arute et al.

77 authors

53 qubits 
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https://en.wikipedia.org/wiki/Speckle_(interference)

Laser speckle

Quantum supremacy experiment by Google

“Qubit Speckle”

Successive application of random 1Q & 2Q gates results in 
a reproducible (if no errors) but complicated interference 
pattern that is, for sufficiently many qubits and gates, 
intractable by classical computers



Quantum supremacy experiment by Google

Nature 574, 505 (2019) Arute et al.

• 1 → no error, 0 → any error
• P(xi) computed by classical computers
• Average over many trials



Quantum supremacy experiment by Google

Nature 574, 505 (2019) Arute et al.



The race goes on

Phys. Rev. Lett. 127, 180501 (2021) Wu et al. (54 authors)

“Zuchongzhi” 56 qubits

“The computational cost of the classical 
simulation of this task is estimated to 
be 2–3 orders of magnitude higher than 
the previous work on 53-qubit 
Sycamore processor”

“If our algorithm could be implemented with high 
efficiency on a modern supercomputer with 
ExaFLOPS performance, we estimate that ideally, 
the simulation would cost a few dozens of seconds, 
which is faster than Google’s quantum hardware”

Phys. Rev. Lett. 129, 090502 (2022) Pan et al.

Quantum vs. Classical, Quantum vs. Quantum



Error correction experiment by ETH

Nature 605, 669 (2022) Krinner et al.
See also: Phys. Rev. Lett. 129, 030501 (2022) Zhao et al.; arXiv:2203.07205 Sundaresan et al.; arXiv:2207.06431v2 Google Quantum AI

Andreas Wallraff
https://qudev.phys.ethz.ch/Andreas-Wallraff

9 (= d2) data qubits, 8 (= d2−1) auxiliary qubits, 1 (= ⌊(d−1)/2⌋) correctable error 



Error correction experiment by ETH

Nature 605, 669 (2022) Krinner et al.

𝑆𝑍1 = 𝑍1𝑍4

𝑆𝑍2 = 𝑍4𝑍5𝑍7𝑍8

𝑆𝑋3 = 𝑋5𝑋6𝑋8𝑋9

𝑆𝑍4 = 𝑍6𝑍9

𝑆𝑋1 = 𝑋2𝑋3

𝑆𝑋2 = 𝑋1𝑋2𝑋4𝑋5

𝑆𝑍3 = 𝑍2𝑍3𝑍5𝑍6

𝑆𝑋4 = 𝑋7𝑋8

Z & X stabilizers (Error syndrome)

𝑍L = 𝑍1𝑍2𝑍3

𝑋L = 𝑋1𝑋4𝑋7

Logical operators

Weight-2 Weight-4

𝑋 = 𝐻𝑍𝐻

𝐻 𝐻

𝑍

𝑍

CZ gate → Nonlocal

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



Error correction experiment by ETH

Nature 605, 669 (2022) Krinner et al.

• Logical state 0 L, 1 L, ± L = ( 0 L ± 1 L)/ 2 preparation

→ Prepare 0 ⊗9, 𝑋L 0
⊗9, + ⊗9, 𝑍L +

⊗9 & run the QEC cycle once (w/o meas.)

• “Leakage” detection/rejection in every cycle



Error correction experiment by ETH

Nature 605, 669 (2022) Krinner et al.

• Error correction in postprocessing

• With x ≈ 2, “break-even” may be achieved



Summary and references

• Quantum computation and quantum error correction
– The key ingredients of QC are quantum parallelism and quantum 

interference, which are both susceptible to noise
– QEC protects quantum states by creating larger quantum states, and 

detects errors via parity measurements without destroying them

• Superconducting qubits
– Circuit QED offers a scalable approach to quantum computing in the 

microwave domain, as recently demonstrated by various research 
groups & companies worldwide

– My symposium talk

• “Quantum Computation and Quantum Information”
– Michael A. Nielsen & Isaac L. Chuang (Cambridge University Press, 2000)

• “A quantum engineer’s guide to superconducting qubits”
– Appl. Phys. Rev. 6, 021318 (2019) Krantz et al.


