Detection of Nuclear Spins Using Nitrogen-Vacancy Centers in Diamond

Eisuke Abe
Spintronics Research Center, Keio University

Keio University
2018.12.07

Materials Science Seminar@JAIST

Diamond envy

©Lucara Diamond

1109 carats, \$70M

Diamond NV

©Lucara Diamond

1109 carats, \$70M

Diamond NV

Why a single NV spin?

- Optically active (init. \& readout)
- Microwave spin control
- High coherence (LT-RT-500 K)

Quantum sensing \& Quantum network

[Biology] Annu. Rev. Phys. Chem. 65, 83 (2014) Schirhagl et al. [Magnetometry] Rep. Prog. Phys. 77, 056503 (2014) Rondin et al.
[Magnetic resonance] J. Mag. Res. 269, 225 (2016) Wrachtrup et al. [Quantum technologies] Nature Photon. 12, 516 (2018) Awschalom et al.
[Quantum internet] Science 362, eaam9288 (2018) Wehner et al.

Quantum sensing

- Room T. operation
- High spatial resolution

- Nondestructive
- Various modalities
- Nano MRI
- Probe for CM systems
- Biology

Quantum network

Outline

- Basics of NV centers in diamond
- Structure
- Optical properties
- Spin properties
- Quantum sensing
- Basics
- Correlation spectroscopy and detection of nuclear spins
- Ultrahigh resolution sensing
- Determination of the position of a single nuclear spin

Outline

- Basics of NV centers in diamond
- Structure
- Optical properties
- Spin properties
- Quantum sensing
- Basics
- Correlation spectroscopy and detection of nuclear spins
- Ultrahigh resolution sensing
- Determination of the position of a single nuclear spin

Crystal \& energy level structures

- Negatively-charged (NV^{-})
- $4 s p^{3}$ orbitals, $6 e^{-}$(5 from the defect, 1 captured)
- $C_{3 v}$ (symmetry axis = quantization axis)

$$
\begin{aligned}
& \text { Effective spin-1 system } \\
& \text { (}{ }^{2} \text {-hole spin-triplet) } \\
& e_{x} \uparrow \text { 个 } e_{y} \\
& \xrightarrow[\uparrow \downarrow]{ } a_{1} \\
& \xrightarrow{\uparrow} \downarrow a_{1}^{\prime}
\end{aligned}
$$

Optical transitions

V.B.

PL spectroscopy

C.B. $\left(E_{\mathrm{g}}=5.47 \mathrm{eV}=227 \mathrm{~nm}\right)$

ZPL and PSB

V.B.

PL imaging

C.B. $\left(E_{\mathrm{g}}=5.47 \mathrm{eV}=227 \mathrm{~nm}\right)$

Photon statistics

C.B. $\left(E_{\mathrm{g}}=5.47 \mathrm{eV}=227 \mathrm{~nm}\right)$

One photon at a time

V.B.

Non-radiative path

V.B.

Time-resolved fluorescence

C.B. $\left(E_{\mathrm{g}}=5.47 \mathrm{eV}=227 \mathrm{~nm}\right)$

The NR channel provides a means to read out and initialize the NV spin

CW ODMR

[^0]
CW ODMR at $B_{0}=0$

C.B. $\left(E_{\mathrm{g}}=5.47 \mathrm{eV}=227 \mathrm{~nm}\right)$

Zero-field splitting $H=D S_{z}^{2}$

CW ODMR at $B_{0} \geq 0$

C.B. $\left(E_{\mathrm{g}}=5.47 \mathrm{eV}=227 \mathrm{~nm}\right)$

Zeeman $H=D S_{z}^{2}+\gamma_{\mathrm{e}} B_{0} S_{z}$
$\gamma_{\mathrm{e}}=28 \mathrm{MHz} / \mathrm{mT}$

Experimental setup

(Fiber laser\& fiber AOM)

Stripline \& XYZ-piezo stage
(XY-galvo + Z-piezo \& 1-axis magnet)

Experimental setup

Experimental setup

Qubit \& coherence

$|" 0 "\rangle \equiv\left|m_{s}=0\right\rangle \quad|\Psi\rangle=\alpha|0\rangle+\beta|1\rangle \quad|" 1 "\rangle \equiv\left|m_{s}=-1\right\rangle$
T_{2} : measure of how long a superposition state is preserved

Puled ODMR: Spin echo

Sign of phase accumulation

Positive

Negative
Phase accumulation by DC field

Coherence time

Stretched exponential decay

$$
\exp \left[-\left(\frac{2 \tau}{T_{2}}\right)^{p}\right]
$$

CVD growth of shallow single NV centers

- Hydrogen-terminated
- $\sim 5 \mathrm{~nm}$ from the surface
- $\left[{ }^{12} \mathrm{C}\right]=99.999 \%$

Outline

- Basics of NV centers in diamond

- Structure

- Optical properties
- Spin properties
- Quantum senisng
- Basics
- Correlation spectroscopy and detection of nuclear spins
- Ultrahigh resolution sensing
- Determination of the position of a single nuclear spin

Quantum sensing

- Room T. operation
- High spatial resolution

- Nondestructive
- Various modalities
- Nano MRI
- Probe for CM systems
- Biology

Nuclear spin sensing

Nuclear spins precess at $f_{\mathrm{ac}}=$ a few $\mathrm{kHz}-\mathrm{MHz}$ under B_{0}

Weak AC magnetic field on the NV spin (11 nT@ $\left.d_{N V}=5 n m\right)$

Detect using quantum coherence

AC magnetometry

CP $(N=4)$

Sign of phase accumulation

AC field at $f_{\text {ac }}=1 / 2 \tau$

Sensor phase buildup = decrease of coherence

Rev. Mod. Phys. 89, 035002 (2017) Degen et al.

AC magnetometry

CP $(N=4)$

Sign of phase accumulation

Multiple oscillations between π-pulses average out the sensor phase

Nuclear spin sensing

- Single NV center in a natural abundant diamond ($\left[{ }^{13} \mathrm{C}\right]=1.1 \%, d_{\mathrm{NV}} \sim 50 \mu \mathrm{~m}$)
- Sweep τ \& repeat ($f=1 / 2 \tau, \Delta \tau=31.3 \mathrm{~ns}, N=16$)
- $f_{\mathrm{c}}=\gamma_{\mathrm{C}} B_{0}=10.705 \mathrm{kHz} / \mathrm{mT} \times 36.2 \mathrm{mT}$

Correlation spectroscopy

AC field at $f_{\text {ac }}$

Accumulate more phase

$$
\text { if } t_{\text {corr }}=m / f_{\text {ac }}
$$

Nature Commun. 4, 1651 (2013) Laraoui et al.
Phys. Rev. Appl. 4, 024004 (2015) Kong et al.
Nature Commun. 6, 8527 (2015) Staudacher et al.
Phys. Rev. Lett. 116, 197601 (2016) Boss et al.

Correlation spectroscopy

AC field at $f_{\text {ac }}$

No gain of the phase if

$$
t_{\text {corr }}=(m+1 / 4) / f_{\text {ac }}
$$

The transition probability for random phases

$$
p\left(t_{1}\right) \approx \frac{1}{2}\left\{1-\frac{1}{2}\left(\frac{\gamma B_{\mathrm{ac}} t_{\mathrm{s}}}{\pi}\right)^{2} \cos \left(2 \pi f_{\mathrm{ac}} t_{\mathrm{corr}}\right)\right\}
$$

Nature Commun. 4, 1651 (2013) Laraoui et al. Phys. Rev. Appl. 4, 024004 (2015) Kong et al.

Correlation spectroscopy

AC field at $f_{\text {ac }}$

Where to look at?

- $f_{\mathrm{t}}=1 / 2 \tau=301.6 \mathrm{kHz}$
- $\tau=1.7875 \mu \mathrm{~s}$

Correlation spectroscopy of a nucleus

Phys. Rev. B 98, 121405 (2018) Sasaki et al.

Correlation spectroscopy of a nucleus

Hamiltonian of NV- ${ }^{13} \mathrm{C}$ coupled system

$$
H=f_{\mathrm{c}} I_{z}+\left|m_{s}=-1\right\rangle\langle-1|\left(A_{\|} I_{z}+A_{\perp} I_{x}\right)
$$

\rightarrow No hyperfine field when $\left|m_{s}=0\right\rangle$

Phys. Rev. B 98, 121405 (2018) Sasaki et al.

Coherent control of a nuclear spin

Hamiltonian of NV- ${ }^{13} \mathrm{C}$ coupled system

$$
H=f_{\mathrm{c}} I_{z}+\left|m_{s}=-1\right\rangle\langle-1|\left(A_{\|} I_{z}+A_{\perp} I_{x}\right)
$$

\rightarrow The single ${ }^{13} \mathrm{C} n$-spin rotates about the A_{\perp} axis

Phys. Rev. B 98, 121405 (2018) Sasaki et al.

Conditional rotation of a nuclear spin

CP $(N=4)$

Evolution of \boldsymbol{n}-spin vector

Start from $\left|m_{s}=0\right\rangle$

Start from $\left|m_{\mathrm{s}}=-1\right\rangle$

Coherent control of a nuclear spin

Transition probability of the NV spin

$$
P_{\mathrm{X}}=1-\frac{1}{2}(1-\underbrace{\boldsymbol{n}_{0} \cdot \boldsymbol{n}_{-1}}_{-1}) \sin ^{2} \frac{N \phi_{\mathrm{cp}}}{2}
$$

Phys. Rev. Lett. 109, 137602 (2012) Taminiau et al.

Phys. Rev. B 98, 121405 (2018) Sasaki et al.

Determination of hf constants

Magnetic dipole int. + contact hf int.

$$
A_{\|} \propto \frac{3 \cos ^{2} \theta-1}{r^{3}} \quad A_{\perp} \propto \frac{3 \cos \theta \sin \theta}{r^{3}}
$$

$$
(r, \theta)=\left(6.84 \AA, 94.8^{\circ}\right)
$$

Toward single-molecular imaging

- Information of the positions of the individual nuclei
\rightarrow Accurate measurement of $e-n$ int. const's $\left(A_{\|}, A_{\perp}\right) \approx(r, \theta)$
\rightarrow Lack of information on the azimuthal angle ϕ
- Spectral resolution
\rightarrow Easy to resolve isotopes
\rightarrow Need to measure J-couplings \& chemical shifts (ppm!)
\rightarrow Limited by sensor/memory lifetimes ($T_{2 e / n}, T_{1 e / n}$)

Toward single-molecular imaging

- Information of the positions of the individual nuclei
\rightarrow Accurate measurement of $e-n$ int. const's $\left(A_{\|}, A_{\perp}\right) \approx(r, \theta)$
\rightarrow Lack of information on the azimuthal angle ϕ
- Spectral resolution
\rightarrow Easy to resolve isotopes
\rightarrow Need to measure J-couplings \& chemical shifts (ppm!)
\rightarrow Limited by sensor/memory lifetimes ($T_{2 \mathrm{e} / \mathrm{n}}, T_{1 \mathrm{e} / \mathrm{n}}$)

AC magnetometry

CP $(N=4)$

Sign of phase accumulation

- φ depends on the initial phase α of the AC field $(\varphi \propto \cos \alpha)$

AC magnetometry

AC field at $f_{\text {ac }}$

- φ depends on the initial phase α of the AC field $(\varphi \propto \cos \alpha)$
- Average over random $\boldsymbol{\alpha}$

Ultrahigh resolution sensing

AC field at $f_{\text {ac }}$

- φ depends on the initial phase $\boldsymbol{\alpha}$ of the AC field $(\varphi \propto \cos \alpha)$
- Average over random $\boldsymbol{\alpha}$
- If the data acq. is periodic, adjacent α^{\prime} s are related by $\alpha_{k+1}=2 \pi f_{\mathrm{ac}} t_{\mathrm{L}}+\alpha_{k}$

Science 356, 832 (2017) Schmitt et al.; Science 356, 837 (2017) Boss et al.; Nature 555, 351 (2018) Glenn et al.

Ultrahigh resolution sensing

AC field at $f_{\text {ac }}$

Science 356, 832 (2017) Schmitt et al.; Science 356, 837 (2017) Boss et al.; Nature 555, 351 (2018) Glenn et al.

Ultrahigh resolution sensing

$B_{\mathrm{ac}}=96.5 \mathrm{nT} \& f_{\mathrm{ac}}=\mathbf{2 . 0 0 1} \mathrm{MHz}$ applied from a coil, detected by a single NV center

J. Appl. Phys. 123, 161101 (2018) Abe \& Sasaki

Ultrahigh resolution sensing

- Spectral resolution not limited by sensor/memory lifetimes ($T_{2 \mathrm{e} / \mathrm{n}}, T_{1 \mathrm{e} / \mathrm{n}}$)
- Only limited by the stability of LO (essentially infinite)
- Resolution $=T^{-1} \&$ SNR $\propto T^{0.5} \rightarrow$ Precision $\propto T^{-1.5}$

NMR spectroscopy

Data from Harvard: Nature 555, 351 (2018) Glenn et al.

- $\quad[\mathrm{NV}] \approx 3 \times 10^{17} \mathrm{~cm}^{-3}$
- \# of NV $\approx 5 \times 10^{9}$
- $V_{\text {detect }} \approx 25 \mathrm{pL}$
- \# of protons $\approx 2.5 \times 10^{15}$
- RF pulse \rightarrow FID

See also: Science 357, 67 (2017) Aslam et al. (Wrachtrup, Stuttgart) $\left[B_{0}=3 \mathrm{~T}, f_{\mathrm{e}}=87 \mathrm{GHz}, T_{1 \mathrm{n}}=260 \mathrm{~s}\right]$

NMR spectroscopy

Data from Harvard: Nature 555, 351 (2018) Glenn et al.

See also: Science 357, 67 (2017) Aslam et al. (Wrachtrup, Stuttgart) $\left[B_{0}=3 \mathrm{~T}, f_{\mathrm{e}}=87 \mathrm{GHz}, T_{1 \mathrm{n}}=260 \mathrm{~s}\right]$

Toward single-molecular imaging

- Information of the positions of the individual nuclei
\rightarrow Accurate measurement of $e-n$ int. const's $\left(A_{\|}, A_{\perp}\right) \approx(r, \theta)$
\rightarrow Lack of information on the azimuthal angle ϕ
- Spectral resolution
\rightarrow Easy to resolve isotopes
\rightarrow Need to measure J-couplings \& chemical shifts (ppm!)
\rightarrow Limited by sensor/memory lifetimes ($T_{2 e / n}, T_{1 e / n}$)

How to determine ϕ ?

$$
t=0 \text { (Tipped) }
$$

$t>0$ (Precess)

Transition probability of the NV spin after the detection of a single nuclear spin

$$
P_{\mathrm{Y}}=\frac{1}{2}-\frac{1}{2} \cos \left(\phi-\phi_{\mathrm{n}}\right) \sin N \phi_{\mathrm{cp}}
$$

Azimuthal angle of the nuclear Bloch vector: $2 \pi f_{\mathrm{p}} t+\phi_{\mathrm{n}}(0)$

Ensemble vs. single

RF pulse

The initial state matters
\rightarrow Dynamic nuclear polarization (DNP)

Determination of ϕ of a ${ }^{13} \mathrm{C} n$-spin

1. DNP (PulsePol)
2. RF pulse@m $=-1$
3. Wait t (n-spin precesses)
4. AC sensing

PulsePol

Hamiltonian engineering

- DNP condition: $2 \tau_{\text {pol }}=k / f_{\mathrm{n}}$ (k : odd, f_{n} : nuclear Larmor frequency)
- Average Hamiltonian $\propto S_{+} I_{-}+S_{-} I_{+}, \propto S_{+} I_{+}+S_{-} I_{-}$

[PulsePol] Sci. Adv. 4, eaat8978 (2018) Schwartz et al.

PulsePol

Phys. Rev. B 98, 121405 (2018) Sasaki et al.

PulsePol

Phys. Rev. B 98, 121405 (2018) Sasaki et al.

Determination of ϕ of a ${ }^{13} \mathrm{C} n$-spin

1. DNP (PulsePol)
2. RF pulse@m $=-1$
3. Wait t (n-spin precesses)
4. AC sensing

Determination of ϕ of a ${ }^{13} \mathrm{C} n$-spin

$$
\begin{array}{ll}
\checkmark & t \rightarrow 1 \mathrm{~ms} \text { (undersampling) } \\
\checkmark & f_{\mathrm{p}}=215.79 \mathrm{kHz} \approx f_{1}=215.6 \mathrm{kHz} \\
\checkmark & \phi-\phi_{\mathrm{n}}(0)=334.0^{\circ} \\
\checkmark & \phi_{\mathrm{n}}(0)=89.2^{\circ} \text { (Real-space } n \text {-spin trajectory) }
\end{array}
$$

$\phi_{\mathrm{n}}(0):$ Real-space n-spin trajectory

\longrightarrow Direction of the RF field
\longrightarrow Bloch vector@t = 0 (Considering the rotation axis of the n-spin \& detuning)
_- Full simulation based on the Bloch equation (Tilt of q-axis, pulse delay...)
Phys. Rev. B 98, 121405 (2018) Sasaki et al.

Determination of ϕ of a ${ }^{13} \mathrm{C} n$-spin

$$
\begin{aligned}
& \checkmark t \rightarrow 1 \mathrm{~ms} \text { (undersampling) } \\
& \checkmark f_{\mathrm{p}}=215.79 \mathrm{kHz} \approx f_{1}=215.6 \mathrm{kHz} \\
& \checkmark \phi-\phi_{\mathrm{n}}(0)=334.0^{\circ} \\
& \checkmark \quad \phi_{\mathrm{n}}(0)=89.2^{\circ} \text { (Real-space } n \text {-spin trajectory) } \\
& \rightarrow \phi=247.8 \pm 4.1^{\circ}
\end{aligned}
$$

Observation of weakly coupled ${ }^{13} \mathrm{C} n$-spins

Ultrahigh resolution sensing ($N=2$)

- $f_{\mathrm{c}}=387.5 \mathrm{kHz}$
- RF pulse@ms $=0$
- $N=2$ to minimize back actions from NV

Phys. Rev. B 98, 121405 (2018) Sasaki et al.

Observation of weakly coupled ${ }^{13} \mathrm{C} n$-spins

Ultrahigh resolution sensing ($N=2$)

Phys. Rev. B 98, 121405 (2018) Sasaki et al.

Summary

- Tools for single-molecule imaging/structural analysis are being developed
\rightarrow Determination of the position of a single $n-\operatorname{spin}^{[1,2]}$
\rightarrow Ultrahigh resolution sensing on single n-spins ${ }^{[1,3,4]}$
- Other issues: Create high-quality "shallow" NVs, accurately position single molecules/proteins near the sensor etc
[1] Phys. Rev. B 98, 121405 (2018) Sasaki, Itoh \& Abe (arXiv.1806.00177)
[2] Phys. Rev. Lett. 121, 170801 (2018) Zopes et al. (arXiv.1807.04559)
[3] arXiv.1806.02181 Pfender et al.
[4] arXiv.1806.08243 Cujia et al.

[^0]: V.B.

