

Quantum Spintronics Design: Quantum Sensing with NV Centers in Diamond

Eisuke Abe

RIKEN Center for Quantum Computing

2023.2.22

42nd Computational Materials Design (CMD[®]) Workshop Spintronics Design Course (Online)

Diamond envy

©GIA

a = 0.357 nm $\rho = 1.77 \times 10^{23} \text{ cm}^{-3}$

Diamond envy

©GIA

Types of diamond (% in natural diamonds)

- Ia: [N] < 3000 ppm, 98%
- Ib: [N] < 500 ppm, 0.1%
- IIa: [N] < 1 ppm, 1–2%
- IIb: [B] > 1 ppm, 0.1%

a = 0.357 nm $\rho = 1.77 \times 10^{23} \text{ cm}^{-3}$

Diamond NV

©GIA

Our diamond: synthetic (CVD-grown) 2 x 2 x 0.5 mm³, \$700 (E6) Type IIa, [N] < 5 ppb, [NV] < 0.03 ppb

a = 0.357 nm $ho = 1.77 \times 10^{23} \text{ cm}^{-3}$

Quick overview of NV centers

- Optical detection & initialization of single spins
- Microwave control of single spins
- Room temperature operation

Quantum sensing with NV centers

- Sensitive to various physical quantities: *B*, *E*, *T*, *S*...
- Various modalities
- DC & AC modes
- High sensitivity
- High spatial resolution: μm–Å
- Wide temperature range: 800 K–mK
- Nondestructive

Near-surface NV center & NMR

Nanodiamond & biology

Nature 500, 54 (2013)

protein NV center

Scanning probe & condensed matter

Wide-field imaging & geoscience/astrophysics

Science 346, 1089 (2014)

Science 351, 836 (2016)

Rev. Sci. Instrum. 87, 063703 (2016); Nature 549, 252 (2017)

Outline

• Basics of NV centers in diamond

- Structure
- Optical & magnetic properties
- Basics of magnetic resonance

• Quantum sensing

- AC magnetometry
- Detection of proton spin ensemble
- Detection and control of a single proton spin

Outline

• Basics of NV centers in diamond

- Structure
- Optical & magnetic properties
- Basics of magnetic resonance
- Quantum sensing
 - AC magnetometry
 - Detection of proton spin ensemble
 - Detection and control of a single proton spin

Crystal & energy level structures

- Negatively-charged (NV⁻)
- 4 sp^3 orbitals, 6 e^- (5 from the defect, 1 captured)
- C_{3v} (symmetry axis = quantization axis)
- 4 configurations in real space

Effective spin-1 system (e²-hole spin-triplet)

Energy levels

PL spectroscopy

PL imaging

Optical diffraction limit = $\lambda_{exc}/(2NA)$

V.B.

Photon statistics

Timing analyzer

V.B.

Time-resolved fluorescence

The **non-radiative** & **spin-selective** channel provides a means to **read out** & **initialize** the NV spin

V.B.

Optically detected magnetic resonance

Experimental setup

(XY-galvo + Z-piezo & 1-axis magnet)

Experimental setup

Experimental setup

AIP Adv. 10, 025206 (2020) Misonou et al.

Outline

- Basics of NV centers in diamond
 - Structure
 - Optical & magnetic properties

• Basics of magnetic resonance

- Quantum sensing
 - AC magnetometry
 - Detection of proton spin ensemble
 - Detection and control of a single proton spin

Larmor precession

Frame rotating at angular velocity Ω: Rotate slower...why?

Larmor precession

DC field along the *z* direction becomes weaker

Magnetic resonance

DC field along the z direction becomes weaker

Magnetic resonance

$\mu \hat{z} (T_{\rm p} = 0)$ $\pi/2$ pulse μ $\mu \hat{y} \ (T_{\rm p} = 1/4\gamma B_1)$ x *B*₁ $-\mu \hat{z} (T_{\rm p} = 1/2\gamma B_1)$ π pulse

Frame rotating at $\Omega = \gamma B_0$

 T_p : duration of B_1 field

- Rotations about the $\pm \hat{x}, \pm \hat{y}$ axes are realized by adjusting the microwave phases
- Rotation about the \hat{z} axis is superposed when observed from the rest (non-resonant) frame

Qubit & Bloch sphere

Qubit, spin-½ (NV is spin-1!)

Rabi oscillation

MW frequency fixed to one of the resonances $(m_s = 0 \leftrightarrow -1 @B_0 = 4.7 \text{ mT})$ Microwave Laser Contrast (arb. unit) 060 060 Initialization Readout MW $T_{\rm p}$ 0.85 1.0 R 2.8 2.9 3.0 2.7 Frequency (GHz) م⁰ 0.5 0.0 0 0.3 0.0 0.1 0.2 0.4 0.5 0.6 $T_{\rm p}$ (μ s) $m_{\rm s}$ = 0 $\pi/2$ -pulse π -pulse

Quantum coherence

 T_2 : measure of how long a superposition state is preserved

Relaxation times: $T_1 \& T_2$

Bloch equation (Phenomenological description of incoherent spin dynamics)

In typical spin systems, $T_1 >> T_2$

Energy relaxation (Change of the direction of a spin)

$$\frac{1}{T_1} = \frac{\gamma^2}{2} \int_{-\infty}^{\infty} \left[\langle b_x(\tau) b_x(0) \rangle + \langle b_y(\tau) b_y(0) \rangle \right] \cos(\omega_0 \tau) \, d\tau$$

Phase relaxation (Random change of the precession frequency)

$$\frac{1}{T_2} = \frac{1}{2T_1} + \frac{\gamma^2}{2} \int_{-\infty}^{\infty} \langle b_z(\tau) b_z(0) \rangle d\tau$$

Measurement of T_2

Frequency domain → Lorentzian

Stay along the y axis in the frame rotating at $v_{\rm e}$

Time domain \rightarrow Decay of the transverse signal

Measurement of T_2

Time domain \rightarrow Decay of the transverse signal

Frequency domain → Lorentzian

Precess at δv in the frame rotating at $v_{\rm e}$

- Slow (> T_2) fluctuation of B_0 arising from magnet, nuclear spins...
- δv is constant during a given run but varies in different runs (quasi-static)
- Many measurement runs
- Inhomogeneous line broadening

Spin echo

AIP Adv. 10, 025206 (2020) Misonou et al.

Outline

- Basics of NV centers in diamond
 - Structure
 - Optical & magnetic properties
- Basics of magnetic resonance

• Quantum sensing

- AC magnetometry
- Detection of proton spin ensemble
- Detection and control of a single proton spin

Quantum sensing of nuclear spins

Nature Commun. **6**, 8527 (2015)

Nuclear spins **precess** at f_{ac} = a few kHz–MHz under B_0

Weak AC magnetic field on the NV spin

Detect using quantum coherence of the NV spin

AC magnetometry

Sensor phase buildup (deviation from y axis): *loss of coherence*

AC magnetometry

Sensor phase buildup (deviation from *y* axis): *the initial phase* α *matters*

- $\varphi \propto \cos \alpha$
- Usually, we average over random α

Sensing of ensemble nuclear spins

•
$$T_2 = 6.2 \ \mu s \ @B_0 = 23.5 \ mT$$

- *N* = 64
- $2\tau = 2 \times 32 \ \mu s/64 = 1 \ \mu s \rightarrow \gamma_H B_0 = (42.577 \ \text{kHz/mT}) \times B_0 = 1.00 \ \text{MHz}$

Sensing of ensemble nuclear spins

Fit by
$$C(\tau) = f(B_{\rm rms})$$

$$B_{\rm rms} = \frac{\mu_0}{4\pi} h \gamma_{\rm H} \sqrt{\frac{5\pi\rho}{96d_{\rm NV}^3}}$$

The explicit form of $C(\tau)$ is given in Phys. Rev. B **93**, 045425 (2016)

- Proton density $\rho = 6 \times 10^{28} \text{ m}^{-3}$ (known)
- $d_{\rm NV} = 6.26 \, \rm nm$
- *B*_{rms} ≈ 560 nT
- Detection volume $(d_{NV})^3 \approx 0.25 \text{ zL} (\text{zepto} = 10^{-21})$
- # of protons $\rho(d_{\rm NV})^3 \approx 1500$
- Thermal polarization (10^{-7}) vs. statistical fluctuation (1500)^{0.5} \approx **39**

Toward single-molecule imaging

• High spatial resolution

- → Special to single-nuclear-spin-level NMR
- → Measure the positions of individual nuclear spins in a single molecule

• High spectral resolution

- \rightarrow Routine in conventional ensemble NMR spectroscopy
- \rightarrow Measure nuclear species (¹H, ¹³C, ¹⁹F...)
- → Measure J-couplings & chemical shifts with ppm accuracy

Sensing of single proton spin

- Single NV in a N-doped CVD film ([¹²C] = 99.999%)
- *N* = 64
- $f_{\rm H} = \gamma_{\rm H} B_0 = 42.577 \text{ kHz/mT x } 28.7 \text{ mT} = 1.2239 \text{ MHz}$

Correlation spectroscopy

The transition probability for random phases (α)

 \rightarrow Sweep t_{corr}

$$p(t_1) \approx \frac{1}{2} \left\{ 1 - \frac{1}{2} \left(\frac{\gamma B_{ac} t_s}{\pi} \right)^2 \cos(2\pi f_{ac} t_{corr}) \right\}$$

Nature Commun. **4**, 1651 (2013) Laraoui *et al.* Phys. Rev. Appl. **4**, 024004 (2015) Kong *et al.* Nature Commun. **6**, 8527 (2015) Staudacher *et al.* Phys. Rev. Lett. **116**, 197601 (2016) Boss *et al.*

Correlation spectroscopy of single proton spin

f₀ = 1.2234 MHz
f₁ = 1.2046 MHz

Appl. Phys. Lett. 117, 114002 (2020) Sasaki et al.

Correlation spectroscopy of single proton spin

Hamiltonian of ¹H nuclear spin coupled with NV spin

$$H_{\rm n} = f_{\rm H}I_z + |m_s = -1\rangle\langle -1|(\underline{A}_{\parallel}I_z + A_{\perp}I_x)$$

 \rightarrow No hyperfine field when $|m_s = 0\rangle$

•
$$f_0 = 1.2234 \text{ MHz} = f_H (m_s = 0)$$

•
$$f_1 = 1.2046 \text{ MHz} = f_H + A'_{\parallel} (m_s = -1)$$

$$A'_{\parallel} = -18.8 \text{ kHz}$$

 $(f_0 + f_1)/2 = 1.2140 \text{ MHz} \rightarrow \text{dip}$

Appl. Phys. Lett. 117, 114002 (2020) Sasaki et al.

Coherent control of single proton spin

Hamiltonian of ¹H nuclear spin coupled with NV spin

$$H_{\rm n} = f_{\rm H}I_z + |m_s = -1\rangle\langle -1|(A_{\parallel}I_z + A_{\perp}I_{\chi})\rangle$$

 \rightarrow The single proton spin rotates about the A_{\perp} axis

- *N* up to 656 (*τ* = 411.5 ns, fixed)
- $f_{\rm osc} = 7.414 \text{ kHz} = A'_{\perp}/2$

Coherent control of single proton spin

Transition probability of the NV spin

$$P_{0,X} = 1 - \frac{1}{2} (1 - \underbrace{n_0 \cdot n_{-1}}_{-1}) \sin^2 \frac{N\phi_{cp}}{2}$$

The explicit forms of n_0 , n_{-1} , $\phi_{\rm cp}$ are given in Phys. Rev. Lett. **109**, 137602 (2012)

- N up to 656 (τ = 411.5 ns, fixed)
- $f_{\rm osc} = 7.414 \, \rm kHz = A'_{\perp}/2$

 $P_{0,X}$ < 0.5 (coherent rotation) → Single proton

Appl. Phys. Lett. 117, 114002 (2020) Sasaki et al.

Conditional rotation of single nuclear spin

Evolution of <u>nuclear</u> spin vector

 $t = 3\tau/2 \rightarrow 5\tau/2$ $t = 5\tau/2 \rightarrow 7\tau/2$

 $t = 7\tau/2 \rightarrow 4\tau$

 $|m_{\rm s}=0\rangle$ $|m_{\rm s}=-1\rangle$

q-axis of nuclear spin

Determination of hyperfine constants

Magnetic dipole interaction

$$A_{\parallel} = h \gamma_{\rm e} \gamma_{\rm H} \frac{3\cos^2 \theta - 1}{r^3}$$

$$A_{\perp} = h\gamma_{\rm e}\gamma_{\rm H} \frac{3\cos\theta\sin\theta}{r^3}$$

The position of the nucleus can be determined \rightarrow Basis for single-molecule structure analysis

(Azimuthal angle ϕ can determined by RF control) Phys. Rev. B **98**, 121405 (2018) Sasaki *et al.*

Appl. Phys. Lett. 117, 114002 (2020) Sasaki et al.

Magnetic field dependence

 $(\gamma_{\rm H}/\gamma_{\rm C} = 3.97 \rightarrow \text{Spurious harmonics?})$ Phys. Rev. X **5**, 021009 (2015) Loretz *et al.*

Appl. Phys. Lett. 117, 114002 (2020) Sasaki et al.

Toward single-molecule imaging

• High spatial resolution

- → Accurate measurement of electron–nuclear interaction parameters $(A_{\parallel}, A_{\perp}) \approx (r, \theta)$
- $ightarrow \phi$ can also be determined by RF control of nuclear spin

• High spectral resolution

- \rightarrow Routine in conventional ensemble NMR spectroscopy
- \rightarrow Measure nuclear species (¹H, ¹³C, ¹⁹F...)
- → Measure J-couplings & chemical shifts with ppm accuracy

Not so easy with NV centers Resolution limited by sensor/memory spin lifetimes ($T_{2e/n}$, $T_{1e/n}$)

 T_{2e} tends to be shorter for near-surface NV centers

AC magnetometry revisited

- $\varphi \propto \cos \alpha$
- Usually, we average over **random** *α*

AC magnetometry revisited

- $\varphi \propto \cos \alpha$
- Usually, we average over **random** *α*
- If the data acquisition is periodic, adjacent α 's are related by $\alpha_{k+1} = 2\pi f_{ac}t_{L} + \alpha_{k}$

Ultrahigh resolution sensing

Undersampled, sensor-lifetime-unlimited signal

Science **356**, 832 (2017) Schmitt *et al.* Science **356**, 837 (2017) Boss *et al.* Nature **555**, 351 (2018) Glenn *et al.*

Ultrahigh resolution sensing

 B_{ac} = 96.5 nT & f_{ac} = 2.001 MHz applied from a coil, detected by a single NV center

J. Appl. Phys. 123, 161101 (2018) Abe et al.

Free induction decay of single proton spin

Summary

- Tools for single-molecule imaging/structure analysis are being developed
 - \rightarrow Ultrahigh resolution sensing^[1,2,3], resolving chemical shifts^[3,4] & suppression of back action from nuclear spins^[5,6]
 - \rightarrow Determination of the positions of individual nuclear spins via RF control^[7,8,9,10]
 - \rightarrow Detection & control of single proton spins^[11,12]

• ¹³C nuclear spin cluster as a quantum simulator/computer^[13,14]

[1] Science **356**, 832 (2017) Schmitt *et al.* (Ulm)

[2] Science **356**, 837 (2017) Boss *et al.* (ETH)

[3] Nature 555, 351 (2018) Glenn et al. (Harvard)

[4] Science **357**, 67 (2017) Aslam *et al.* (Stuttgart)

[5] Nature Commun. **10**, 594 (2019) Pfender *et al.* (Stuttgart)

[6] Nature **571**, 230 (2019) Cujia *et al.* (ETH)

[7] Phys. Rev. B 98, 121405 (2018) Sasaki et al. (Keio)

[8] Phys. Rev. Lett. **121**, 170801 (2018) Zopes *et al.* (ETH)

[9] Nature **576**, 411 (2019) Abobeih *et al.* (Delft)

[10] Nature Commun. **13**, 1260 (2022) Cujia *et al.* (ETH)

[11] Phys. Rev. Lett. **113**, 197601 (2014) Sushkov *et al.* (Harvard)

[12] Appl. Phys. Lett. **117**, 114002 (2020) Sasaki *et al.* (Keio)

[13] Science **374**, 1474 (2021) Randall *et al.* (Delft)

[14] Nature 606, 884 (2022) Abobeih et al. (Delft)