Quantum Spintronics Design:

Quantum Sensing with NV Centers in Diamond

Eisuke Abe
RIKEN Center for Quantum Computing

2023.2.22
$42^{\text {nd }}$ Computational Materials Design (CMD ${ }^{\oplus}$) Workshop Spintronics Design Course (Online)

Diamond envy

III (13)	IV $\mathbf{(1 4)}$	\mathbf{V} $(\mathbf{1 5})$
B	\mathbf{C}	N
$=0.357 \mathrm{~nm}$		
$\rho=1.77 \times 10^{23} \mathrm{~cm}^{-3}$		

Diamond envy

Types of diamond (\% in natural diamonds)

- la: $[\mathrm{N}]<3000$ ppm, 98%
- lb: $[\mathrm{N}]<500 \mathrm{ppm}, 0.1 \%$
- Ila: [N] < 1 ppm, 1-2\%
- IIb: [B] > 1 ppm, 0.1\%

$a=0.357 \mathrm{~nm}$
$\rho=1.77 \times 10^{23} \mathrm{~cm}^{-3}$

Diamond NV

© GIA

Our diamond: synthetic (CVD-grown) $2 \times 2 \times 0.5 \mathrm{~mm}^{3}, \$ 700$ (E6) Type Ila, [N] < $5 \mathrm{ppb},[\mathrm{NV}]<0.03 \mathrm{ppb}$

$a=0.357 \mathrm{~nm}$
$\rho=1.77 \times 10^{23} \mathrm{~cm}^{-3}$

Quick overview of NV centers

- Optical detection \& initialization of single spins
- Microwave control of single spins
- Room temperature operation

PL mapping

Optically detected magnetic resonance (ODMR)

Rabi oscillation

Quantum sensing with NV centers

- Sensitive to various physical quantities: B, E, T, S...
- Various modalities
- DC \& AC modes
- High sensitivity
- High spatial resolution: $\mu \mathrm{m}-\AA$
- Wide temperature range: $800 \mathrm{~K}-\mathrm{mK}$
- Nondestructive

Nanodiamond \& biology

($\times 10^{4}$ c.p.s.)

Nature 500, 54 (2013)

Near-surface NV center \& NMR

Scanning probe \& condensed matter

Wide-field imaging \& geoscience/astrophysics

Science 346, 1089 (2014)

Outline

- Basics of NV centers in diamond
- Structure
- Optical \& magnetic properties
- Basics of magnetic resonance
- Quantum sensing
- AC magnetometry
- Detection of proton spin ensemble
- Detection and control of a single proton spin

Outline

- Basics of NV centers in diamond
- Structure
- Optical \& magnetic properties
- Basics of magnetic resonance
- Quantum sensing
- AC magnetometry
- Detection of proton spin ensemble
- Detection and control of a single proton spin

Crystal \& energy level structures

- Negatively-charged (NV^{-})
- $4 s p^{3}$ orbitals, $6 e^{-}$(5 from the defect, 1 captured)
- $C_{3 \mathrm{v}}$ (symmetry axis = quantization axis)
- 4 configurations in real space

Effective spin-1 system (${ }^{2}$-hole spin-triplet)

$$
\begin{aligned}
& e_{x} \uparrow \text { 个 } \uparrow=e_{y} \\
& \uparrow \underset{\sim}{\sim} a_{1} \\
& \uparrow \stackrel{\sim}{\nabla} a^{\prime}{ }_{1}
\end{aligned}
$$

Energy levels

PL spectroscopy

Zero-phonon line at 637 nm \& phonon-sideband up to 800 nm

PL imaging

Optical diffraction limit $=\lambda_{\text {exc }} /(2 N A)$

Photon statistics

C.B. $\left(E_{\mathrm{g}}=5.47 \mathrm{eV}=227 \mathrm{~nm}\right)$
$|e\rangle$

V.B.

Single-photon source: one photon at a time

Time-resolved fluorescence

The non-radiative \& spin-selective channel provides a means to read out \& initialize the NV spin

Optically detected magnetic resonance

$$
\begin{gathered}
H=D S_{z}^{2}+\gamma_{\mathrm{e}} \boldsymbol{B}_{0} \cdot \boldsymbol{S} \stackrel{B_{0} \| \mathrm{NV}-\mathrm{axis}}{=} D S_{Z}^{2}+\gamma_{\mathrm{e}} B_{0} S_{Z} \\
D=2.87 \mathrm{GHz}, v_{\mathrm{e}}=28 \mathrm{MHz} / \mathrm{mT}
\end{gathered}
$$

Experimental setup

Experimental setup

Experimental setup

Outline

- Basics of NV centers in diamond
- Structure
- Optical \& magnetic properties
- Basics of magnetic resonance
- Quantum sensing
- AC magnetometry
- Detection of proton spin ensemble
- Detection and control of a single proton spin

Larmor precession

Torque equation

Magnetic moment: $\boldsymbol{\mu}=\gamma \boldsymbol{J}$

Frame rotating at angular velocity Ω :
Rotate slower...why?

Larmor precession

Frame rotating at angular velocity Ω :
Rotate slower...why?

DC field along the z direction becomes weaker

Magnetic resonance

AC field rotating in the $x y$ plane at Ω

Frame rotating at angular velocity Ω :
Rotate slower...why?

DC field along the z direction becomes weaker

Magnetic resonance

Frame rotating at $\Omega=\boldsymbol{\gamma} \mathbf{B}_{0}$
Rest (non-resonant) frame

- Rotations about the $\pm \hat{x}, \pm \hat{y}$ axes are realized by adjusting the microwave phases
T_{p} : duration of B_{1} field
- Rotation about the \hat{z} axis is superposed when observed from the rest (non-resonant) frame

Qubit \& Bloch sphere

Qubit, spin- $1 / 2$ (NV is spin-1!)

$$
\left\{\begin{array}{l}
|" 0 "\rangle \equiv\left|m_{s}=0\right\rangle \\
|" 1 "\rangle \equiv\left|m_{s}=-1\right\rangle
\end{array}\right.
$$

Rabi oscillation

MW frequency fixed to one of the resonances

Microwave

Quantum coherence

$$
|0\rangle \equiv\left|m_{s}=0\right\rangle
$$

$|\Psi\rangle=\alpha|0\rangle+\beta|1\rangle$
$|1\rangle \equiv\left|m_{s}=-1\right\rangle$
T_{2} : measure of how long a superposition state is preserved

Relaxation times: $T_{1} \& T_{2}$

Bloch equation (Phenomenological description of incoherent spin dynamics)

$$
\frac{d \boldsymbol{\mu}}{d t}=\boldsymbol{\mu} \times \gamma \boldsymbol{B}_{0}-\frac{\boldsymbol{\mu}_{\|}-\boldsymbol{\mu}_{0}}{T_{1}}-\frac{\boldsymbol{\mu}_{\perp}}{T_{2}}
$$

In typical spin systems, $T_{1} \gg T_{2}$

Energy relaxation (Change of the direction of a spin)

$$
\frac{1}{T_{1}}=\frac{\gamma^{2}}{2} \int_{-\infty}^{\infty}\left[\left\langle b_{x}(\tau) b_{x}(0)\right\rangle+\left\langle b_{y}(\tau) b_{y}(0)\right\rangle\right] \cos \left(\omega_{0} \tau\right) d \tau
$$

Phase relaxation (Random change of the precession frequency)

$$
\frac{1}{T_{2}}=\frac{1}{2 T_{1}}+\frac{\gamma^{2}}{2} \int_{-\infty}^{\infty}\left\langle b_{z}(\tau) b_{z}(0)\right\rangle d \tau
$$

Measurement of T_{2}

Time domain \rightarrow Decay of the transverse signal

Frequency domain \rightarrow Lorentzian

Stay along the y axis in the frame rotating at v_{e}

Measurement of T_{2}

Time domain \rightarrow Decay of the transverse signal

Frequency domain \rightarrow Lorentzian

Precess at δv in the frame rotating at v_{e}

- Slow ($>T_{2}$) fluctuation of B_{0} arising from magnet, nuclear spins...
- δv is constant during a given run but varies in different runs (quasi-static)
- Many measurement runs
- Inhomogeneous line broadening

Spin echo

Outline

- Basics of NV centers in diamond
- Structure
- Optical \& magnetic properties
- Basics of magnetic resonance
- Quantum sensing
- AC magnetometry
- Detection of proton spin ensemble
- Detection and control of a single proton spin

Quantum sensing of nuclear spins

Nature Commun. 6, 8527 (2015)

Nuclear spins precess at $f_{\mathrm{ac}}=$ a few $\mathrm{kHz}-\mathrm{MHz}$ under B_{0}

Weak AC magnetic field on the NV spin
Detect using quantum coherence of the NV spin

AC magnetometry

Sensor phase buildup (deviation from y axis): loss of coherence

AC magnetometry

Sensor phase buildup (deviation from y axis): the initial phase α matters

- $\varphi \propto \cos \alpha$
- Usually, we average over random α

Sensing of ensemble nuclear spins

- $T_{2}=6.2 \mu \mathrm{~s} @ B_{0}=23.5 \mathrm{mT}$
- $N=64$
- $2 \tau=2 \times 32 \mu \mathrm{~s} / 64=1 \mu \mathrm{~s} \rightarrow \gamma_{\mathrm{H}} B_{0}=(42.577 \mathrm{kHz} / \mathrm{mT}) \times B_{0}=1.00 \mathrm{MHz}$

Sensing of ensemble nuclear spins

Fit by $C(\tau)=f\left(B_{\mathrm{rms}}\right)$

$$
B_{\mathrm{rms}}=\frac{\mu_{0}}{4 \pi} h \gamma_{\mathrm{H}} \sqrt{\frac{5 \pi \rho}{96 d_{\mathrm{NV}}^{3}}}
$$

The explicit form of $C(\tau)$ is given in Phys. Rev. B 93, 045425 (2016)

- Proton density $\rho=6 \times 10^{28} \mathrm{~m}^{-3}$ (known)
- $d_{\mathrm{NV}}=6.26 \mathrm{~nm}$
- $B_{\mathrm{rms}} \approx 560 \mathrm{nT}$
- Detection volume $\left(d_{\mathrm{Nv}}\right)^{3} \approx \mathbf{0 . 2 5} \mathbf{z L}$ (zepto $=10^{-21}$)
- \# of protons $\rho\left(d_{\mathrm{NV}}\right)^{3} \approx 1500$
- Thermal polarization $\left(10^{-7}\right)$ vs. statistical fluctuation $(1500)^{0.5} \approx 39$

Toward single-molecule imaging

- High spatial resolution
\rightarrow Special to single-nuclear-spin-level NMR
\rightarrow Measure the positions of individual nuclear spins in a single molecule
- High spectral resolution
\rightarrow Routine in conventional ensemble NMR spectroscopy
\rightarrow Measure nuclear species ($\left.{ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F} . ..\right)$
\rightarrow Measure J-couplings \& chemical shifts with ppm accuracy

Detection of single protons in CVD diamond
(as a testbed)

Sensing of single proton spin

$10 \times 10 \mu \mathrm{~m}^{2}$

- Single NV in a N-doped CVD film ($\left[{ }^{12} \mathrm{C}\right]=99.999 \%$)
- $N=64$
- $f_{\mathrm{H}}=\gamma_{\mathrm{H}} B_{0}=42.577 \mathrm{kHz} / \mathrm{mT} \times 28.7 \mathrm{mT}=1.2239 \mathrm{MHz}$

Correlation spectroscopy

Accumulate more phase
if $t_{\text {corr }}=m / f_{\text {ac }}$
The transition probability for random phases (α)
\rightarrow Sweep $t_{\text {corr }}$

$$
p\left(t_{1}\right) \approx \frac{1}{2}\left\{1-\frac{1}{2}\left(\frac{\gamma B_{\mathrm{ac}} t_{\mathrm{s}}}{\pi}\right)^{2} \cos \left(2 \pi f_{\mathrm{ac}} t_{\mathrm{corr}}\right)\right\}
$$

Correlation spectroscopy of single proton spin

- $f_{0}=1.2234 \mathrm{MHz}$
- $f_{1}=1.2046 \mathrm{MHz}$

Correlation spectroscopy of single proton spin

Hamiltonian of ${ }^{1} \mathrm{H}$ nuclear spin coupled with NV spin

$$
H_{\mathrm{n}}=f_{\mathrm{H}} I_{z}+\left|m_{s}=-1\right\rangle\langle-1|\left(A_{\|} I_{z}+A_{\perp} I_{x}\right)
$$

\rightarrow No hyperfine field when $\left|m_{s}=0\right\rangle$

- $f_{0}=1.2234 \mathrm{MHz}=f_{\mathrm{H}}\left(m_{\mathrm{s}}=0\right)$
- $f_{1}=1.2046 \mathrm{MHz}=f_{\mathrm{H}}+A_{\|}^{\prime}\left(m_{\mathrm{s}}=-1\right)$

$$
A_{\|}^{\prime}=-18.8 \mathrm{kHz}
$$

$$
\left(f_{0}+f_{1}\right) / 2=1.2140 \mathrm{MHz} \rightarrow \operatorname{dip}
$$

Coherent control of single proton spin

Hamiltonian of ${ }^{1} \mathrm{H}$ nuclear spin coupled with NV spin

$$
H_{\mathrm{n}}=f_{\mathrm{H}} I_{z}+\left|m_{s}=-1\right\rangle\langle-1|\left(A_{\|} I_{z}+A_{\perp} I_{x}\right)
$$

\rightarrow The single proton spin rotates about the A_{\perp} axis

- N up to 656 ($\tau=411.5 \mathrm{~ns}$, fixed)
- $f_{\text {osc }}=7.414 \mathrm{kHz}=A^{\prime}{ }_{\perp} / 2$

Coherent control of single proton spin

Transition probability of the NV spin

$$
P_{0, \mathrm{X}}=1-\frac{1}{2}(1-\underbrace{\boldsymbol{n}_{0} \cdot \boldsymbol{n}_{-1}}_{-1}) \sin ^{2} \frac{N \phi_{\mathrm{cp}}}{2}
$$

The explicit forms of $\boldsymbol{n}_{0}, \boldsymbol{n}_{-1}, \phi_{\mathrm{cp}}$ are given in Phys. Rev. Lett. 109, 137602 (2012)

- N up to 656 ($\tau=411.5 \mathrm{~ns}$, fixed)
- $f_{\text {osc }}=7.414 \mathrm{kHz}=A^{\prime}{ }_{\perp} / 2$

$$
\begin{aligned}
& P_{0, \mathrm{x}}<0.5 \text { (coherent rotation) } \\
& \rightarrow \text { Single proton }
\end{aligned}
$$

Conditional rotation of single nuclear spin

Evolution of nuclear spin vector

q-axis of nuclear spin

Start from $\left|m_{s}=-1\right\rangle$

Determination of hyperfine constants

Magnetic dipole interaction

$$
\begin{aligned}
& A_{\|}=h \gamma_{\mathrm{e}} \gamma_{\mathrm{H}} \frac{3 \cos ^{2} \theta-1}{r^{3}} \\
& A_{\perp}=h \gamma_{\mathrm{e}} \gamma_{\mathrm{H}} \frac{3 \cos \theta \sin \theta}{r^{3}}
\end{aligned}
$$

The position of the nucleus can be determined
\rightarrow Basis for single-molecule structure analysis

Magnetic field dependence

($\gamma_{\mathrm{H}} / \gamma_{\mathrm{C}}=3.97 \rightarrow$ Spurious harmonics?) Phys. Rev. X 5, 021009 (2015) Loretz et al.

Toward single-molecule imaging

- High spatial resolution
\rightarrow Accurate measurement of electron-nuclear interaction parameters $\left(A_{\|}, A_{\perp}\right) \approx(r, \theta)$
$\rightarrow \phi$ can also be determined by RF control of nuclear spin
- High spectral resolution
\rightarrow Routine in conventional ensemble NMR spectroscopy
\rightarrow Measure nuclear species (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$...)
\rightarrow Measure J-couplings \& chemical shifts with ppm accuracy

Not so easy with NV centers
Resolution limited by sensor/memory spin lifetimes ($T_{2 \mathrm{e} / \mathrm{n}}, T_{1 \mathrm{e} / \mathrm{n}}$)
$T_{2 \mathrm{e}}$ tends to be shorter for near-surface NV centers

AC magnetometry revisited

(

- $\varphi \propto \cos \alpha$
- Usually, we average over random α

AC magnetometry revisited

- $\varphi \propto \cos \alpha$
- Usually, we average over random α
- If the data acquisition is periodic, adjacent α^{\prime} s are related by $\alpha_{k+1}=2 \pi f_{\mathrm{ac}} t_{\mathrm{L}}+\alpha_{k}$

Ultrahigh resolution sensing

Undersampled, sensor-lifetime-unlimited signal
Science 356, 832 (2017) Schmitt et al. Science 356, 837 (2017) Boss et al. Nature 555, 351 (2018) Glenn et al.

Ultrahigh resolution sensing

$B_{\mathrm{ac}}=96.5 \mathrm{nT} \& f_{\mathrm{ac}}=2.001 \mathrm{MHz}$ applied from a coil, detected by a single NV center

Free induction decay of single proton spin

RF control \& free precession of proton spin

- $T_{\mathrm{rf}, \pi / 2}=4.115 \mu \mathrm{~s}$
- [PulsePol] $-T_{\mathrm{rf}, \pi / 2}-\left[\mathrm{X} / 2-(\mathrm{XY} 16)-\mathrm{Y} / 2-\mathrm{L}_{\mathrm{RO}}\right]^{50}$
- $f_{\text {sample }}=1 / t_{\mathrm{L}}=84.46 \mathrm{kHz}$
- $f_{\mathrm{p}}=\left(f_{0}+f_{1}\right)\left(t_{\mathrm{s}} / t_{\mathrm{L}}\right) / 2+f_{0}\left(t_{\mathrm{s}}-t_{\mathrm{L}}\right) / t_{\mathrm{L}}=1.2182 \mathrm{MHz}$
\rightarrow Split (analogous to chemical shifts)

Summary

- Tools for single-molecule imaging/structure analysis are being developed
\rightarrow Ultrahigh resolution sensing ${ }^{[1,2,3]}$, resolving chemical shifts ${ }^{[3,4]}$ \& suppression of back action from nuclear spins ${ }^{[5,6]}$
\rightarrow Determination of the positions of individual nuclear spins via RF control ${ }^{[7,8,9,10]}$
\rightarrow Detection \& control of single proton spins ${ }^{[11,12]}$
- ${ }^{13}$ C nuclear spin cluster as a quantum simulator/computer ${ }^{[13,14]}$

```
[1] Science 356, 832 (2017) Schmitt et al. (Ulm)
[2] Science 356, 837 (2017) Boss et al. (ETH)
[3] Nature 555,351 (2018) Glenn et al. (Harvard)
[4] Science 357, }67\mathrm{ (2017) Aslam et al. (Stuttgart)
[5] Nature Commun. 10, 594 (2019) Pfender et al. (Stuttgart)
[6] Nature 571, }230\mathrm{ (2019) Cujia et al. (ETH)
[7] Phys. Rev. B 98, 121405 (2018) Sasaki et al. (Keio)
[8] Phys. Rev. Lett. 121, 170801 (2018) Zopes et al. (ETH)
[9] Nature 576, }411\mathrm{ (2019) Abobeih et al. (Delft)
[10] Nature Commun. 13, 1260 (2022) Cujia et al. (ETH)
[11] Phys. Rev. Lett. 113, 197601 (2014) Sushkov et al. (Harvard)
[12] Appl. Phys. Lett. 117, 114002 (2020) Sasaki et al. (Keio)
[13] Science 374, 1474 (2021) Randall et al. (Delft)
[14] Nature 606, }884\mathrm{ (2022) Abobeih et al. (Delft)
```

