Quantum Spintronics Design (NV centers in diamond)

Eisuke Abe

RIKEN Center for Emergent Matter Science

2021.02.24

CMD Spintronics Design Course (Online)

Diamond envy

 $\rho_{\rm N}$ = 1.77 x 10²³ cm⁻³

©GIA

Diamond envy

 $\rho_{\rm N}$ = 1.77 x 10²³ cm⁻³

©GIA

Diamond NV

©GIA

Diamond NV

Synthetic (CVD) diamond

2² x 0.5 mm³, \$700 (E6) [N] < 5 ppb, [NV] < 0.03 ppb

Not like...

©GIA

 $\rho_{\rm N}$ = 1.77 x 10²³ cm⁻³

Quantum sensing with NV centers

- *B, E, T, S*...
- DC & AC modes
- Wide temperature range
- Nondestructive
- High spatial resolution
- Various modalities

Near-surface NV center & NMR

Nanodiamond & biology

Nature 500, 54 (2013)

Science 351, 836 (2016)

Scanning probe & condensed matter

Rev. Sci. Instrum. 87, 063703 (2016); Nature 549, 252 (2017)

Outline

Basics of NV centers in diamond

- Structure
- Optical & magnetic properties
- Basics of magnetic resonance

Quantum sensing

- AC magnetometry
- Detection of proton spin ensemble
- Detection and control of a single proton spin

Outline

Basics of NV centers in diamond

- Structure
- Optical & magnetic properties
- Basics of magnetic resonance
- Quantum sensing
 - AC magnetometry
 - Detection of proton spin ensemble
 - Detection and control of a single proton spin

Crystal & energy level structures

- Negatively-charged (NV⁻)
- 4 sp^3 orbitals, 6 e^- (5 from the defect, 1 captured)
- C_{3v} (symmetry axis = quantization axis)

Energy levels

V.B.

PL spectroscopy & imaging

V.B.

PL spectroscopy & imaging

Photon statistics

V.B.

Time-resolved fluorescence

Optically detected magnetic resonance

V.B.

Experimental setup

(XY-galvo + Z-piezo & 1-axis magnet)

Experimental setup

Experimental setup

Outline

- Basics of NV centers in diamond
 - Structure
 - Optical & magnetic properties
- Basics of magnetic resonance
- Quantum sensing
 - AC magnetometry
 - Detection of proton spin ensemble
 - Detection and control of a single proton spin

Joseph Larmor (1857–1942) **Frame rotating at angular velocity Ω:** Rotate slower...why?

(from Wikipedia)

DC field along the z direction becomes weaker

DC field along the z direction becomes weaker

π pulse

Rest (non-resonant) frame

- Rotations about the $\pm \hat{x}, \pm \hat{y}$ axes are realized by adjusting the microwave phases
- Rotation about the \hat{z} axis is superposed when observed from the rest (non-resonant) frame

Description as a quantum bit

Qubit, spin-1/2 (NV is spin-1!)

Superposition state

 $\begin{cases} |"0"\rangle \equiv |m_s = 0\rangle \\ |"1"\rangle \equiv |m_s = -1\rangle \end{cases}$ $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ $|\alpha|^2 + |\beta|^2 = 1$ $|\psi\rangle = e^{i\delta} \left(\cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle\right) \qquad \begin{array}{l} 0 \le \theta \le \pi\\ 0 \le \delta, \phi < 2\pi\end{array}$ **Global** phase $|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$ $0 \le \theta \le \pi$ $0 \le \phi < 2\pi$

Bloch sphere

Qubit, spin-1/2 (NV is spin-1!)

Rabi oscillation

Quantum coherence

 $|0\rangle \equiv |m_s = 0\rangle$ $|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$ $|1\rangle \equiv |m_s = -1\rangle$

 T_2 : measure of how long a superposition state is preserved

Measurement of T_2

Time domain \rightarrow Decay time constant T_2

Frequency domain → Lorentz width

Measurement of T_2

Time domain \rightarrow Decay time constant T_2

Seen to precess at δv in the frame rotating at v_{ρ}

Frequency domain → Lorentz width

Inhomogeneous line broadening

 $\frac{\pi/2}{t=0}$

Spin echo

Coherence time

Stretched exponential decay

$$\exp\left[-\left(\frac{2\tau}{T_2}\right)^p\right]$$

Near-surface NV center

- N⁺ implantation into ¹²C (I = 0) layer
- $d_{\rm NV} = 6.26 \, \rm nm$
- $B_0 = 23.5 \text{ mT}$

Outline

- Basics of NV centers in diamond
 - Structure
 - Optical & magnetic properties
- Basics of magnetic resonance

Quantum sensing

- AC magnetometry
- Detection of proton spin ensemble
- Detection and control of a single proton spin

Nuclear spin sensing

Nuclear spins **precess** at f_{ac} = a few kHz–MHz under B_0

Weak AC magnetic field on the NV spin

Detect using quantum coherence

AC magnetometry

AC magnetometry

- φ depends on the **initial phase** α of the AC field ($\varphi \propto \cos \alpha$)
- Average over random α

Nuclear spin sensing

 $\rightarrow \gamma_{\rm H}B_0 = (42.577 \text{ kHz/mT}) \times B_0 = 1.00 \text{ MHz}$

Nuclear spin sensing

- Proton density $\rho = 6 \times 10^{28} \text{ m}^{-3}$ (known)
- $d_{\rm NV} = 6.26 \, \rm nm$
- $B_{\rm rms} \approx 560 \, \rm nT$
- Detection volume $(d_{NV})^3 \approx 0.25$ zL (zepto = 10^{-21})
- # of proton $\rho(d_{\rm NV})^3 \approx 1500$
- Thermal pol. (10⁻⁷) vs. statistical pol. (1500)^{0.5} \approx 39 ٠

 $5\pi\rho$

Toward single-molecular imaging

• Strategy

- → Detect individual nuclear spins in a single molecule
- \rightarrow Determine their nuclear species (& chemical shifts) and positions

• Practical issues

- \rightarrow Preparation of high-quality near-surface NV centers
- \rightarrow Accurate positioning of single molecules/proteins near the sensor

Nuclear spin sensing

- Single NV in a N-doped CVD film ([¹²C] = 99.999%)
- *N* = 64 (XY16)
- $f_{\rm H} = \gamma_{\rm H} B_0 = 42.577 \text{ kHz/mT x } 28.7 \text{ mT} = 1.2239 \text{ MHz}$

Correlation spectroscopy

The transition probability for random phases (α)

 \rightarrow Sweep $t_{\rm corr}$

$$p(t_1) \approx \frac{1}{2} \left\{ 1 - \frac{1}{2} \left(\frac{\gamma B_{\rm ac} t_{\rm s}}{\pi} \right)^2 \cos(2\pi f_{\rm ac} t_{\rm corr}) \right\}$$

Nature Commun. **4**, 1651 (2013) Laraoui *et al.* Phys. Rev. Appl. **4**, 024004 (2015) Kong *et al.* Nature Commun. **6**, 8527 (2015) Staudacher *et al.* Phys. Rev. Lett. **116**, 197601 (2016) Boss *et al.*

Correlation spectroscopy of a nucleus

- $f_0 = 1.2234$ MHz • $f_0 = 1.2046$ MHz
- $f_1 = 1.2046 \text{ MHz}$

Correlation spectroscopy of a nucleus

Hamiltonian of NV-1H coupled system

$$H = f_{\mathrm{H}}I_{z} + |m_{s} = -1\rangle\langle -1|(A_{\parallel}I_{z} + A_{\perp}I_{x})$$

 \rightarrow No hyperfine field when $|m_s = 0\rangle$

•
$$f_0 = 1.2234 \text{ MHz} = f_H (m_s = 0)$$

•
$$f_1 = 1.2046 \text{ MHz} = f_H + A'_{\parallel} (m_s = -1)$$

 $A'_{\parallel} = -18.8 \text{ kHz}$ $(f_0 + f_1)/2 = 1.2140 \text{ MHz} \rightarrow \text{dip}$

Coherent control of a nuclear spin

Hamiltonian of NV-1H coupled system

$$H = f_{\rm H} I_z + |m_s = -1\rangle \langle -1| (A_{\parallel} I_z + A_{\perp} I_x)$$

 \rightarrow The single ¹H *n*-spin rotates about the A_{\perp} axis

• $N \rightarrow 656 \ (\tau = 412.5 \text{ ns}, \text{ fixed})$

•
$$f_{\rm osc} = 7.414 \text{ kHz} = A'_{\perp}/2$$

Conditional rotation of a nuclear spin

Evolution of *n*-spin vector

Start from $|m_s = 0\rangle$

q-axis of *n*-spin

Start from $|m_s = -1\rangle$

Coherent control of a nuclear spin

Transition probability of the NV spin

$$P_{0,X} = 1 - \frac{1}{2} (1 - \underbrace{\mathbf{n}_0 \cdot \mathbf{n}_{-1}}_{-1}) \sin^2 \frac{N\phi_{cp}}{2}$$

Phys. Rev. Lett. 109, 137602 (2012) Taminiau et al.

• $N \rightarrow 656 \ (\tau = 412.5 \text{ ns}, \text{ fixed})$

•
$$f_{\rm osc} = 7.414 \text{ kHz} = A'_{\perp}/2$$

 $P_{\chi} < 0.5 \rightarrow$ Single proton!

Determination of hyperfine constants

Magnetic dipole interaction

$$A_{\parallel} = h\gamma_{\rm e}\gamma_{\rm H} \frac{3\cos^2\theta - 1}{r^3}$$

 $A_{\perp} = h \gamma_{\rm e} \gamma_{\rm H} \frac{3 \cos \theta \sin \theta}{r^3}$

$$A_{\parallel} = -19.0 \text{ kHz}$$

 $A_{\perp} = 22.9 \text{ kHz}$

$$r = 1.44 \text{ nm}$$
$$\theta = 72.3^{\circ}$$

The position of the nucleus can be determined \rightarrow Molecular structure analysis

(Azimuthal angle ϕ) Phys. Rev. B **98**, 121405 (2018) Sasaki *et al.*

Magnetic field dependence

 $(\gamma_{\rm H}/\gamma_{\rm C} = 3.97 \rightarrow \text{Spurious harmonics?})$ Phys. Rev. X **5**, 021009 (2015) Loretz *et al.*

Toward single-molecular imaging

• Spatial resolution

- → Accurate measurement of e-n int. const's $(A_{\parallel}, A_{\perp}) \approx (r, \theta)$
- ightarrow Information on the azimuthal angle ϕ

• Spectral resolution

- \rightarrow Nuclear species
- \rightarrow J-couplings & chemical shifts (ppm!)
- \rightarrow Limited by sensor/memory lifetimes ($T_{2e/n}, T_{1e/n}$)

Toward single-molecular imaging

• Spatial resolution

- → Accurate measurement of e-n int. const's $(A_{\parallel}, A_{\perp}) \approx (r, \theta)$
- ightarrow Information on the azimuthal angle ϕ
- Spectral resolution
 - \rightarrow Nuclear species
 - → J-couplings & chemical shifts (ppm!)
 - \rightarrow Limited by sensor/memory lifetimes ($T_{2e/n}, T_{1e/n}$)

AC magnetometry revisited

- φ depends on the **initial phase** α of the AC field ($\varphi \propto \cos \alpha$)
- Average over random α

Ultrahigh resolution sensing

- φ depends on the **initial phase** α of the AC field ($\varphi \propto \cos \alpha$)
- Average over **random** *α*
- If the data acq. is periodic, adjacent α 's are related by $\alpha_{k+1} = 2\pi f_{ac}t_{L} + \alpha_{k}$

Science 356, 832 (2017) Schmitt et al.; Science 356, 837 (2017) Boss et al.; Nature 555, 351 (2018) Glenn et al.

Ultrahigh resolution sensing

Undersampled, sensor-lifetime-unlimited signal

Science 356, 832 (2017) Schmitt et al.; Science 356, 837 (2017) Boss et al.; Nature 555, 351 (2018) Glenn et al.

Ultrahigh resolution sensing

 B_{ac} = 96.5 nT & f_{ac} = 2.001 MHz applied from a coil, detected by a single NV center

Free induction decay

Nuclear Rabi oscillation

- $T_{\rm rf, \pi/2} = 4.115 \ \mu s$
- [PulsePol] $-T_{rf, \pi/2}$ -[X/2-(XY16)-Y/2-L_{RO}]⁵⁰
- $f_{\text{sample}} = 1/t_{\text{L}} = 84.46 \text{ kHz}$
- $f_p = (f_0 + f_1)(t_s/t_L)/2 + f_0(t_s t_L)/t_L = 1.2182 \text{ MHz}$ \rightarrow Split (analogous to chemical shifts)

Summary

- Tools for single-molecule imaging/structural analysis are being developed
 - → Ultrahigh resolution sensing^[1,2,3], resolving chemical shifts^[3,4] & suppression of back action from *n*-spins^[5,6]
 - \rightarrow Determination of the position of individual *n*-spins^[7,8,9]
 - \rightarrow Detection and control of single proton spins^[10,11]

Science **356**, 832 (2017) Schmitt *et al.* (Ulm)
Science **356**, 837 (2017) Boss *et al.* (ETH)
Nature **555**, 351 (2018) Glenn *et al.* (Harvard)
Science **357**, 67 (2017) Aslam *et al.* (Stuttgart)
Nature Commun. **10**, 594 (2019) Pfender *et al.* (Stuttgart)
Nature **571**, 230 (2019) Cujia *et al.* (ETH)
Phys. Rev. B **98**, 121405 (2018) Sasaki *et al.* (Keio)
Phys. Rev. Lett. **121**, 170801 (2018) Zopes *et al.* (ETH)
Nature **576**, 411 (2019) Abobeih *et al.* (Delft)
Phys. Rev. Lett. **113**, 197601 (2014) Sushkov *et al.* (Harvard)
Appl. Phys. Lett. **117**, 114002 (2020) Sasaki *et al.* (Keio)