Quantum Spintronics Design (NV centers in diamond)

Eisuke Abe
RIKEN Center for Emergent Matter Science
2020.02.19

CMD Spintronics Design Course @Osaka University

Short CV

©Google Earth

- 2001.4-2006.3 (Keio) \rightarrow Quantum computing (silicon)
- 2006.4-2009.12 (ISSP, UT) \rightarrow Quantum transport (GaAs QDs, Josephson)
- 2010.1-2011.6 (Oxford) \rightarrow Hybrid system (spin-cavity coupling)
- 2011.7 - 2015.3 (Stanford/RIKEN) \rightarrow Quantum network (InAs QDs)
- 2015.4-2019.1 (Keio) \rightarrow Quantum sensing (diamond)
- 2019.2 - Present (RIKEN) \rightarrow Quantum computing (Josephson)

Quantum technologies

Quantum technologies

Outline

- Basics of NV centers in diamond
- Structure
- Optical properties
- Spin properties and control
- Quantum sensing
- Principle of AC magnetometry
- Detection of proton spin ensemble
- Detection and localization of a single ${ }^{13} \mathrm{C}$ nuclear spin
- Ultrahigh resolution sensing

Outline

- Basics of NV centers in diamond
- Structure
- Optical properties
- Spin properties and control
- Quantum sensing
- Principle of AC magnetometry
- Detection of proton spin ensemble
- Detection and localization of a single ${ }^{13} \mathrm{C}$ nuclear spin
- Ultrahigh resolution sensing

Diamond envy

©GIA

$\rho_{\mathrm{N}}=1.77 \times 10^{23} \mathrm{~cm}^{-3}$

Diamond NV

Synthetic (CVD) diamond $2^{2} \times 0.5 \mathrm{~mm}^{3}, \$ 700$ (E6)
[N$]<5 \mathrm{ppb},[\mathrm{NV}]<0.03 \mathrm{ppb}$

Not like...

©GIA

Crystal \& energy level structures

- Negatively-charged (NV^{-})
- $4 s p^{3}$ orbitals, $6 e^{-}$(5 from the defect, 1 captured)
- $C_{3 v}$ (symmetry axis = quantization axis)

$$
\begin{aligned}
& \text { Effective spin-1 system } \\
& \text { (}{ }^{2} \text {-hole spin-triplet) } \\
& e_{x} \uparrow \text { 个 } e_{y} \\
& \xrightarrow[\uparrow \downarrow]{ } a_{1} \\
& \xrightarrow{\uparrow} \downarrow a_{1}^{\prime}
\end{aligned}
$$

Energy levels

C.B. $\left(E_{\mathrm{g}}=5.47 \mathrm{eV}=227 \mathrm{~nm}\right)$

V.B.

PL spectroscopy \& imaging

Photon statistics

C.B. $\left(E_{\mathrm{g}}=5.47 \mathrm{eV}=227 \mathrm{~nm}\right)$

One photon at a time

V.B.

Time-resolved fluorescence

The non-radiative \& spin-selective channel provides a means to read out \& initialize the NV spin

CW ODMR at $B_{0}=0$

C.B. $\left(E_{\mathrm{g}}=5.47 \mathrm{eV}=227 \mathrm{~nm}\right)$

Zero-field splitting $H=D S_{Z}^{2}$

$$
D=2.87 \mathrm{GHz}
$$

V.B.

CW ODMR at $B_{0}>0$

C.B. $\left(E_{\mathrm{g}}=5.47 \mathrm{eV}=227 \mathrm{~nm}\right)$

V.B.

Zeeman $H=D S_{z}^{2}+\gamma_{\mathrm{e}} B_{0} S_{z}$

$$
\gamma_{\mathrm{e}}=28 \mathrm{MHz} / \mathrm{mT}
$$

$$
B_{0}=4.7 \mathrm{mT}(2.87 \pm 0.132 \mathrm{GHz})
$$

Magnetic resonance

Torque equation (Larmor precession)

Frame rotating at angular velocity $\boldsymbol{\Omega}$:
Rotate slower...why?

DC field along the z direction becomes weaker

Magnetic resonance

Frame rotating at angular velocity $\boldsymbol{\Omega}$:
Rotate slower...why?

DC field along the z direction becomes weaker

Magnetic resonance

Frame rotating at $\Omega=\gamma B_{0}$

$-\mu \hat{z}\left(t=1 / 2 \gamma B_{1}\right)$
π pulse

Rest (non-resonant) frame

- Rotations about the $\pm \hat{x}, \pm \hat{y}$ axes are realized by adjusting the microwave phases
- Rotation about the \hat{z} axis is superposed when observed from the rest (non-resonant) frame

Quantum bit

Qubit, spin-1/2 (NV is spin-1!)

$$
\left\{\begin{array}{l}
|" 0 "\rangle \equiv\left|m_{s}=0\right\rangle \\
|" 1 "\rangle \equiv\left|m_{s}=-1\right\rangle
\end{array}\right.
$$

Superposition state

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

$$
|\alpha|^{2}+|\beta|^{2}=1
$$

$$
\sqrt{v}
$$

$$
\begin{array}{ll}
|\psi\rangle=e^{i \gamma}\left(\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle\right) & 0 \leq \theta \leq \pi \\
\text { Global phase } & 0 \leq \gamma, \phi<2 \pi
\end{array}
$$

$$
\sqrt{v}
$$

$$
|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle
$$

$$
\begin{aligned}
& 0 \leq \theta \leq \pi \\
& 0 \leq \phi<2 \pi
\end{aligned}
$$

Bloch sphere

Qubit, spin-1/2 (NV is spin-1!)

$$
\left\{\begin{array}{l}
|" 0 "\rangle \equiv\left|m_{s}=0\right\rangle \\
|" 1 "\rangle \equiv\left|m_{s}=-1\right\rangle
\end{array}\right.
$$

$$
|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle
$$

$$
\frac{1}{\sqrt{2}}(|0\rangle-i|1\rangle)
$$

Rabi oscillation

Experimental setup

(Fiber laser\& fiber AOM)

Stripline \& XYZ-piezo stage
(XY-galvo + Z-piezo \& 1-axis magnet)

Experimental setup

Experimental setup

Outline

- Basics of NV centers in diamond
- Structure
- Optical properties
- Spin properties and control
- Quantum sensing
- Principle of AC magnetometry
- Detection of proton spin ensemble
- Detection and localization of a single ${ }^{13} \mathrm{C}$ nuclear spin
- Ultrahigh resolution sensing

Quantum sensing with NV centers

- B, E, T, S...
- DC \& AC modes
- Wide temperature range
- Nondestructive
- High spatial resolution
- Various modalities

Nanodiamond \& biology

Nature 500, 54 (2013)
Near-surface NV center \& NMR

Science 351, 836 (2016)

Scanning probe \& condensed matter

Rev. Sci. Instrum. 87, 063703 (2016); Nature 549, 252 (2017)

Nuclear spin sensing

Nature Commun. 6, 8527 (2015)

Nuclear spins precess at $f_{\text {ac }}=$ a few $\mathrm{kHz}-\mathrm{MHz}$ under B_{0}

Weak AC magnetic field on the NV spin

Detect using quantum coherence

Quantum coherence

$$
|0\rangle \equiv\left|m_{s}=0\right\rangle \quad|\Psi\rangle=\alpha|0\rangle+\beta|1\rangle \quad|1\rangle \equiv\left|m_{s}=-1\right\rangle
$$

T_{2} : measure of how long a superposition state is preserved

Spin echo

Modulation function
Sign of phase accumulation

Negative
Phase accumulation by DC field

Coherence time

Stretched exponential decay

$$
\exp \left[-\left(\frac{2 \tau}{T_{2}}\right)^{p}\right]
$$

Near-surface NV center

- N^{+}implantation into ${ }^{12} \mathrm{C}(I=0)$ layer
- $d_{\mathrm{NV}}=6.26 \mathrm{~nm}$
- $B_{0}=23.5 \mathrm{mT}$

AC magnetometry

CP $(N=4)$

Modulation function

Sensor phase buildup = loss of coherence

Nuclear spin sensing

- $T_{2}=6.2 \mu \mathrm{~s} @ B_{0}=23.5 \mathrm{mT}$
- $N=64$ (XY16)

- $(2 \tau)^{-1}=64 /(2 \times 32 \mu \mathrm{~s})=1 \mu \mathrm{~s}$

$$
\rightarrow Y_{\mathrm{H}} B_{0}=(42.577 \mathrm{kHz} / \mathrm{mT}) \times B_{0}=1.00 \mathrm{MHz}
$$

Nuclear spin sensing

$$
C(\tau)=f\left(B_{\mathrm{rms}}\right)
$$

$$
B_{\mathrm{rms}}=\frac{\mu_{0}}{4 \pi} h \gamma_{\mathrm{H}} \sqrt{\frac{5 \pi \rho}{96 d_{\mathrm{NV}}^{3}}}
$$

Phys. Rev. B 93, 045425 (2016)

- Proton density $\rho=6 \times 10^{28} \mathrm{~m}^{-3}$ (known)
- $d_{\mathrm{NV}}=6.26 \mathrm{~nm}$
- $B_{\mathrm{rms}} \approx 560 \mathrm{nT}$
- Detection volume $\left(d_{\mathrm{Nv}}\right)^{3} \approx 0.25 \mathrm{zL}$ (zepto $=10^{-21}$)

- \# of proton $\rho\left(d_{\mathrm{Nv}}\right)^{3} \approx 1500$
- Thermal pol. (10^{-7}) vs. statistical pol. (1500$)^{0.5} \approx 39$

Toward single-molecular imaging

- Strategy
\rightarrow Detect individual nuclear spins contained in a single molecule
\rightarrow Determine their nuclear species (\& chemical shifts) and positions
- Practical issues
\rightarrow Preparation of high-quality near-surface NV centers
\rightarrow Accurate positioning of single molecules/proteins near the sensor

Use ${ }^{13} \mathrm{C}(1.1 \%)$ in diamond as a testbed

Nuclear spin sensing

- Single NV in bulk $\left(\left[{ }^{13} \mathrm{C}\right]=1.1 \%, d_{\mathrm{NV}} \approx 50 \mu \mathrm{~m}\right)$
- $N=16$
- $f_{\mathrm{c}}=\gamma_{\mathrm{c}} B_{0}=10.705 \mathrm{kHz} / \mathrm{mT} \times 36.2 \mathrm{mT}$

Correlation spectroscopy

AC field at $f_{\text {ac }}$

Accumulate more phase
if $t_{\text {corr }}=m / f_{\text {ac }}$

Nature Commun. 4, 1651 (2013) Laraoui et al.
Phys. Rev. Appl. 4, 024004 (2015) Kong et al.
Nature Commun. 6, 8527 (2015) Staudacher et al.
Phys. Rev. Lett. 116, 197601 (2016) Boss et al.

Correlation spectroscopy

AC field at $f_{\text {ac }}$

No gain of the phase if

$$
t_{\text {corr }}=(m+1 / 4) / f_{\text {ac }}
$$

The transition probability for random phases

$$
p\left(t_{1}\right) \approx \frac{1}{2}\left\{1-\frac{1}{2}\left(\frac{\gamma B_{\mathrm{ac}} t_{\mathrm{s}}}{\pi}\right)^{2} \cos \left(2 \pi f_{\mathrm{ac}} t_{\mathrm{corr}}\right)\right\}
$$

Nature Commun. 4, 1651 (2013) Laraoui et al. Phys. Rev. Appl. 4, 024004 (2015) Kong et al.

Correlation spectroscopy

AC field at $f_{\text {ac }}$

Where to look at?

- $f_{\mathrm{t}}=1 / 2 \tau=301.6 \mathrm{kHz}$
- $\tau=1.7875 \mu \mathrm{~s}$

Correlation spectroscopy of a nucleus

Phys. Rev. B 98, 121405 (2018) Sasaki et al.

Correlation spectroscopy of a nucleus

Hamiltonian of NV- ${ }^{13} \mathrm{C}$ coupled system

$$
H=f_{\mathrm{c}} I_{z}+\left|m_{s}=-1\right\rangle\langle-1|\left(A_{\|} I_{z}+A_{\perp} I_{x}\right)
$$

\rightarrow No hyperfine field when $\left|m_{s}=0\right\rangle$

Phys. Rev. B 98, 121405 (2018) Sasaki et al.

Coherent control of a nuclear spin

Hamiltonian of $\mathrm{NV}-{ }^{13} \mathrm{C}$ coupled system

$$
H=f_{\mathrm{c}} I_{z}+\left|m_{s}=-1\right\rangle\langle-1|\left(A_{\|} I_{z}+A_{\perp} I_{x}\right)
$$

\rightarrow The single ${ }^{13} \mathrm{C} n$-spin rotates about the A_{\perp} axis

Phys. Rev. B 98, 121405 (2018) Sasaki et al.

Conditional rotation of a nuclear spin

CP $(N=4)$

Evolution of \boldsymbol{n}-spin vector

Start from $\left|m_{s}=0\right\rangle$

Start from $\left|m_{s}=-1\right\rangle$

Coherent control of a nuclear spin

Transition probability of the NV spin

$$
P_{\mathrm{X}}=1-\frac{1}{2}(1-\underbrace{\boldsymbol{n}_{0} \cdot \boldsymbol{n}_{-1}}_{-1}) \sin ^{2} \frac{N \phi_{\mathrm{cp}}}{2}
$$

Phys. Rev. Lett. 109, 137602 (2012) Taminiau et al.

Phys. Rev. B 98, 121405 (2018) Sasaki et al.

Determination of hf constants

Magnetic dipole int. + contact hf int.

$$
A_{\|} \propto \frac{3 \cos ^{2} \theta-1}{r^{3}} \quad A_{\perp} \propto \frac{3 \cos \theta \sin \theta}{r^{3}}
$$

$$
(r, \theta)=\left(6.84 \AA, 94.8^{\circ}\right)
$$

How to determine ϕ ?

(azimuthal angle)

Magnetic dipole int.

$$
A_{\|} \propto \frac{3 \cos ^{2} \theta-1}{r^{3}} \quad A_{\perp} \propto \frac{3 \cos \theta \sin \theta}{r^{3}}
$$

How to determine ϕ ?

$$
t=0 \text { (Tipped) }
$$

$$
t>0 \text { (Precess) }
$$

Transition probability of the NV spin after the detection of a single nuclear spin

$$
P_{\mathrm{Y}}=\frac{1}{2}-\frac{1}{2} \cos \left(\phi-\phi_{\mathrm{n}}\right) \sin N \phi_{\mathrm{cp}}
$$

Azimuthal angle of the nuclear Bloch vector: $2 \pi f_{\mathrm{p}} t+\phi_{\mathrm{n}}(0)$

Ensemble vs. single

RF pulse

The initial state matters
\rightarrow Dynamic nuclear polarization (DNP)

Determination of ϕ of a ${ }^{13} \mathrm{C} n$-spin

1. DNP (PulsePol)
2. RF pulse@m $=-1$
3. Wait t (n-spin precesses)
4. AC sensing

Determination of ϕ of a ${ }^{13} \mathrm{C} n$-spin

1. DNP (PulsePol)
2. RF pulse@m $=-1$
3. Wait t (n-spin precesses)
4. AC sensing

PulsePol

Hamiltonian engineering

- Average Hamiltonian $\propto S_{+} I_{-}+S_{-} I_{+}, \propto S_{+} I_{+}+S_{-} I_{-}$
- DNP condition: $1 /\left(2 \tau_{\text {pol }}\right)=f_{n} / k\left(f_{n}\right.$: n-precession frequency, k : odd $)$

Sci. Adv. 4, eaat8978 (2018) Schwartz et al.
Phys. Rev. B 98, 121405 (2018) Sasaki et al.

PulsePol

Phys. Rev. B 98, 121405 (2018) Sasaki et al.

PulsePol

Phys. Rev. B 98, 121405 (2018) Sasaki et al.

Determination of ϕ of a ${ }^{13} \mathrm{C} n$-spin

$$
\begin{aligned}
& \checkmark t \rightarrow 1 \mathrm{~ms} \text { (undersampling) } \\
& \checkmark f_{\mathrm{p}}=215.79 \mathrm{kHz} \approx f_{1}=215.6 \mathrm{kHz} \\
& \checkmark \phi-\phi_{\mathrm{n}}(0)=334.0^{\circ} \\
& \checkmark \quad \phi_{\mathrm{n}}(0)=89.2^{\circ} \text { (Real-space } n \text {-spin trajectory) } \\
& \\
& \rightarrow \phi=247.8 \pm 4.1^{\circ}
\end{aligned}
$$

Toward single-molecular imaging

- Information of the positions of the individual nuclei
\rightarrow Accurate measurement of $e-n$ int. const's $\left(A_{\|}, A_{\perp}\right) \approx(r, \theta)$
\rightarrow Lack of information on the azimuthal angle ϕ
- Spectral resolution
\rightarrow Easy to resolve isotopes
\rightarrow Need to measure J-couplings \& chemical shifts (ppm!)
\rightarrow Limited by sensor/memory lifetimes ($T_{2 e / n}, T_{1 e / n}$)

AC magnetometry

CP $(N=4)$

Modulation function

- φ depends on the initial phase α of the AC field $(\varphi \propto \cos \alpha)$

AC magnetometry

AC field at $f_{\text {ac }}$

- φ depends on the initial phase α of the AC field $(\varphi \propto \cos \alpha)$
- Average over random $\boldsymbol{\alpha}$

Ultrahigh resolution sensing

AC field at $f_{\text {ac }}$

- φ depends on the initial phase $\boldsymbol{\alpha}$ of the AC field $(\varphi \propto \cos \alpha)$
- Average over random $\boldsymbol{\alpha}$
- If the data acq. is periodic, adjacent α^{\prime} s are related by $\alpha_{k+1}=2 \pi f_{\mathrm{ac}} t_{\mathrm{L}}+\alpha_{k}$

Science 356, 832 (2017) Schmitt et al.; Science 356, 837 (2017) Boss et al.; Nature 555, 351 (2018) Glenn et al.

Ultrahigh resolution sensing

AC field at $f_{\text {ac }}$

Science 356, 832 (2017) Schmitt et al.; Science 356, 837 (2017) Boss et al.; Nature 555, 351 (2018) Glenn et al.

Ultrahigh resolution sensing

$B_{\mathrm{ac}}=96.5 \mathrm{nT} \& f_{\mathrm{ac}}=\mathbf{2 . 0 0 1} \mathrm{MHz}$ applied from a coil, detected by a single NV center

J. Appl. Phys. 123, 161101 (2018) Abe \& Sasaki

Ultrahigh resolution sensing

- Spectral resolution not limited by sensor/memory lifetimes ($T_{2 \mathrm{e} / \mathrm{n}}, T_{1 \mathrm{e} / \mathrm{n}}$)
- Only limited by the stability of LO (essentially infinite)
- Resolution $=T^{-1} \&$ SNR $\propto T^{0.5} \rightarrow$ Precision $\propto T^{-1.5}$

NMR spectroscopy

Data from Harvard: Nature 555, 351 (2018) Glenn et al.

- $\quad[\mathrm{NV}] \approx 3 \times 10^{17} \mathrm{~cm}^{-3}$
- \# of NV $\approx 5 \times 10^{9}$
- $V_{\text {detect }} \approx 25 \mathrm{pL}$
- \# of protons $\approx 2.5 \times 10^{15}$
- RF pulse \rightarrow FID

See also: Science 357, 67 (2017) Aslam et al. (Wrachtrup, Stuttgart) $\left[B_{0}=3 \mathrm{~T}, f_{\mathrm{e}}=87 \mathrm{GHz}, T_{1 \mathrm{n}}=260 \mathrm{~s}\right]$

NMR spectroscopy

Data from Harvard: Nature 555, 351 (2018) Glenn et al.

See also: Science 357, 67 (2017) Aslam et al. (Wrachtrup, Stuttgart) $\left[B_{0}=3 \mathrm{~T}, f_{\mathrm{e}}=87 \mathrm{GHz}, T_{1 \mathrm{n}}=260 \mathrm{~s}\right]$

Summary

- Tools for single-molecule imaging/structural analysis are being developed
\rightarrow Determination of the position of individual n-spins ${ }^{[1,2,3]}$
\rightarrow Ultrahigh resolution sensing ${ }^{[4,5,6]}$, resolving chemical shifts ${ }^{[6,7]}$ \& suppression of backaction from n-spins ${ }^{[8,9]}$
[1] Phys. Rev. B 98, 121405 (2018) Sasaki et al. (Keio)
[2] Phys. Rev. Lett. 121, 170801 (2018) Zopes et al. (ETH)
[3] Nature 576, 411 (2019) Abobeih et al. (Delft)
[4] Science 356, 832 (2017) Schmitt et al. (Ulm)
[5] Science 356, 837 (2017) Boss et al. (ETH)
[6] Nature 555, 351 (2018) Glenn et al. (Harvard)
[7] Science 357, 67 (2017) Aslam et al. (Stuttgart)
[8] Nature Commun. 10, 594 (2019) Pfender et al. (Stuttgart)
[9] Nature 571, 230 (2019) Cujia et al. (ETH)

