Quantum Spintronics Design (NV centers in diamond)

Eisuke Abe

RIKEN Center for Emergent Matter Science

2019.09.04

CMD Spintronics Design Course

@Osaka University

Short CV

©Google Earth

- 2001.4 2006.3 (Keio) \rightarrow Quantum computing (silicon)
- 2006.4 2009.12 (ISSP, UT) → Quantum transport (GaAs QDs, Josephson)
- 2010.1 2011.6 (Oxford) → Hybrid system (spin–cavity coupling)
- 2011.7 2015.3 (Stanford/RIKEN) → Quantum network (InAs QDs)
- 2015.4 2019.1 (Keio) → Quantum sensing (diamond)
- 2019.2 Present (RIKEN) → Quantum computing (Josephson)

Diamond envy

Diamond NV

Diamond NV

2² x 0.5 mm³, \$700 (E6) [N] < 5 ppb, [NV] < 0.03 ppb

Why a single NV spin?

- Optically active (init. & readout)
- Microwave spin control
- High coherence (LT–RT–500 K)

Quantum sensing & Quantum network

[Biology] Annu. Rev. Phys. Chem. 65, 83 (2014) Schirhagl *et al.* [Magnetometry] Rep. Prog. Phys. 77, 056503 (2014) Rondin *et al.* [Magnetic resonance] J. Mag. Res. 269, 225 (2016) Wrachtrup *et al.* [Quantum technologies] Nature Photon. 12, 516 (2018) Awschalom *et al.* [Quantum internet] Science 362, eaam9288 (2018) Wehner *et al.*

Quantum sensing

- Room T. operation
- High spatial resolution
- Nondestructive
- Various modalities

- Nano MRI
- Probe for CM systems
- Biology

Quantum network

Spin-spin entanglement

between distant NVs

doi:10.1038/nature15759

Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres

B. Hensen^{1,2}, H. Bernien^{1,2}, A. E. Dréau^{1,2}, A. Reiserer^{1,2}, N. Kalb^{1,2}, M. S. Blok^{1,2}, J. Ruitenberg^{1,2}, R. F. L. Vermeulen^{1,2}, R. N. Schouten^{1,2}, C. Abellán³, W. Amaya³, V. Pruneri^{3,4}, M. W. Mitchell^{3,4}, M. Markham⁵, D. J. Twitchen⁵, D. Elkouss¹, S. Wehner¹, T. H. Taminiau^{1,2} & R. Hanson^{1,2}

Nature 526, 682 (2015) Hensen et al.

Times Cited: 1210 (Google Scholar)

Outline

Basics of NV centers in diamond

- Structure
- Optical properties
- Spin properties
- Quantum sensing
 - Basics
 - Correlation spectroscopy and detection of nuclear spins
 - Ultrahigh resolution sensing
 - Determination of the position of a single nuclear spin

Outline

Basics of NV centers in diamond

- Structure
- Optical properties
- Spin properties
- Quantum sensing
 - Basics
 - Correlation spectroscopy and detection of nuclear spins
 - Ultrahigh resolution sensing
 - Determination of the position of a single nuclear spin

Crystal & energy level structures

- Negatively-charged (NV⁻)
- 4 sp^3 orbitals, 6 e^- (5 from the defect, 1 captured)
- C_{3v} (symmetry axis = quantization axis)

Optical transitions

PL spectroscopy

PL imaging

Photon statistics

Non-radiative path

V.B.

Time-resolved fluorescence

CW ODMR

V.B.

CW ODMR at $B_0 = 0$

CW ODMR at $B_0 > 0$

Experimental setup

(XY-galvo + Z-piezo & 1-axis magnet)

Experimental setup

Experimental setup

Qubit & coherence

 $|"0"\rangle \equiv |m_s = 0\rangle$ $|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$ $|"1"\rangle \equiv |m_s = -1\rangle$

 T_2 : measure of how long a superposition state is preserved

Magnetic environment

[N] < 5 ppb, [NV] < 0.03 ppb $\rho_{\rm N} = 1.77 \ {\rm x} \ 10^{23} \ {\rm cm}^{-3}$

¹²C (I = 0) : ¹³C ($I = \frac{1}{2}$) = 98.9% : 1.1%

¹⁴N (I = 1) : ¹⁵N ($I = \frac{1}{2}$) = 99.6% : 0.4%

Rabi oscillation

Pulsed ODMR

 $T_{\rm p} = 1292 \, \rm ns$

Hyperfine coupling with ¹⁴N nucleus of the NV center itself

Ramsey interference

Spin echo

Spin echo

"Collapse and revival"

- Interaction with the nuclear spin bath ([¹³C] = 1.1%)
- $f_c = \gamma_c B_0 = 10.705 \text{ kHz/mT x } 4.7 \text{ mT} = 50.3 \text{ kHz}$
- Revival at $2n\tau = 2n/f_c = 41.8 \times n \, \mu s$

Spin echo

"Collapse and revival"

- Interaction with the nuclear spin bath ($[^{13}C] = 1.1\%$)
- $f_c = \gamma_c B_0 = 10.705 \text{ kHz/mT x } 4.7 \text{ mT} = 50.3 \text{ kHz}$
- Revival at $2n\tau = 2n/f_c = 41.8 \times n \, \mu s$

Coherence time

Stretched exponential decay

$$\exp\left[-\left(\frac{2\tau}{T_2}\right)^p\right]$$

CVD growth of shallow single NV centers

- Hydrogen-terminated
- ~5 nm from the surface
- [¹²C] = 99.999%

Outline

Basics of NV centers in diamond

- Structure
- Optical properties
- Spin properties
- Quantum sensing
 - Basics
 - Correlation spectroscopy and detection of nuclear spins
 - Ultrahigh resolution sensing
 - Determination of the position of a single nuclear spin

Quantum sensing

- Room T. operation
- High spatial resolution
- Nondestructive
- Various modalities

- Nano MRI
- Probe for CM systems
- Biology

Nuclear spin sensing

Nuclear spins **precess** at f_{ac} = a few kHz–MHz under B_0

Weak AC magnetic field on the NV spin (11 nT@ d_{NV} = 5 nm)

Detect using quantum coherence

AC magnetometry

Rev. Mod. Phys. 89, 035002 (2017) Degen et al.

AC magnetometry

Multiple oscillations between π -pulses average out the sensor phase

Rev. Mod. Phys. 89, 035002 (2017) Degen et al.

Nuclear spin sensing

- Single NV center in a natural abundant diamond ([¹³C] = 1.1%, $d_{NV} \approx 50 \mu m$)
- Sweep τ & repeat (f = 1/2τ, Δτ = 31.3 ns, N = 16)
- $f_c = \gamma_c B_0 = 10.705 \text{ kHz/mT x } 36.2 \text{ mT}$

Correlation spectroscopy

Nature Commun. **4**, 1651 (2013) Laraoui *et al.* Phys. Rev. Appl. **4**, 024004 (2015) Kong *et al.* Nature Commun. **6**, 8527 (2015) Staudacher *et al.* Phys. Rev. Lett. **116**, 197601 (2016) Boss *et al.*

Correlation spectroscopy

$$p(t_1) \approx \frac{1}{2} \left\{ 1 - \frac{1}{2} \left(\frac{\gamma B_{\rm ac} t_{\rm s}}{\pi} \right)^2 \cos(2\pi f_{\rm ac} t_{\rm corr}) \right\}$$

Nature Commun. **4**, 1651 (2013) Laraoui *et al.* Phys. Rev. Appl. **4**, 024004 (2015) Kong *et al.* Nature Commun. **6**, 8527 (2015) Staudacher *et al.* Phys. Rev. Lett. **116**, 197601 (2016) Boss *et al.*

Correlation spectroscopy

Correlation spectroscopy of a nucleus

Phys. Rev. B 98, 121405 (2018) Sasaki et al.

Correlation spectroscopy of a nucleus

Hamiltonian of NV–¹³C coupled system

$$H = f_{\rm c}I_z + |m_s = -1\rangle\langle -1|(\underline{A}_{\parallel}I_z + A_{\perp}I_x)$$

 \rightarrow No hyperfine field when $|m_s = 0\rangle$

Coherent control of a nuclear spin

Hamiltonian of NV–¹³C coupled system

$$H = f_{\rm c}I_z + |m_s = -1\rangle\langle -1|(A_{\parallel}I_z + A_{\perp}I_x)$$

Conditional rotation of a nuclear spin

Evolution of *n*-spin vector

Start from $|m_s = 0\rangle$

Q-axis of *n*-spin

Start from $|m_s = -1\rangle$

Coherent control of a nuclear spin

Transition probability of the NV spin

$$P_{\rm X} = 1 - \frac{1}{2} (1 - \underbrace{\boldsymbol{n}_0 \cdot \boldsymbol{n}_{-1}}_{-1}) \sin^2 \frac{N\phi_{\rm cp}}{2}$$

Phys. Rev. Lett. 109, 137602 (2012) Taminiau et al.

Determination of hf constants

 $(r, \theta) = (6.84 \text{ Å}, 94.8^{\circ})$

Toward single-molecular imaging

- Information of the positions of the individual nuclei
 - → Accurate measurement of e-n int. const's $(A_{\parallel}, A_{\perp}) \approx (r, \theta)$
 - ightarrow Lack of information on the azimuthal angle ϕ

• Spectral resolution

- ightarrow Easy to resolve isotopes
- \rightarrow Need to measure *J*-couplings & chemical shifts (ppm!)
- \rightarrow Limited by sensor/memory lifetimes ($T_{2e/n}, T_{1e/n}$)

Toward single-molecular imaging

- Information of the positions of the individual nuclei
 - → Accurate measurement of e-n int. const's $(A_{\parallel}, A_{\perp}) \approx (r, \theta)$
 - ightarrow Lack of information on the azimuthal angle ϕ

• Spectral resolution

- ightarrow Easy to resolve isotopes
- \rightarrow Need to measure *J*-couplings & chemical shifts (ppm!)
- \rightarrow Limited by sensor/memory lifetimes ($T_{2e/n}, T_{1e/n}$)

AC magnetometry

 $\varphi = 0$

• φ depends on the **initial phase** α of the AC field ($\varphi \propto \cos \alpha$)

AC magnetometry

- φ depends on the **initial phase** α of the AC field ($\varphi \propto \cos \alpha$)
- Average over **random** *α*

- φ depends on the **initial phase** α of the AC field ($\varphi \propto \cos \alpha$)
- Average over random α
- If the data acq. is periodic, adjacent α 's are related by $\alpha_{k+1} = 2\pi f_{ac}t_{L} + \alpha_{k}$

Science 356, 832 (2017) Schmitt et al.; Science 356, 837 (2017) Boss et al.; Nature 555, 351 (2018) Glenn et al.

Science 356, 832 (2017) Schmitt et al.; Science 356, 837 (2017) Boss et al.; Nature 555, 351 (2018) Glenn et al.

 B_{ac} = 96.5 nT & f_{ac} = 2.001 MHz applied from a coil, detected by a single NV center

J. Appl. Phys. 123, 161101 (2018) Abe & Sasaki

- Spectral resolution not limited by sensor/memory lifetimes ($T_{2e/n}$, $T_{1e/n}$)
- Only limited by the stability of LO (essentially infinite)
- Resolution = T^{-1} & SNR $\propto T^{0.5} \rightarrow$ Precision $\propto T^{-1.5}$

NMR spectroscopy

Data from Harvard: Nature 555, 351 (2018) Glenn et al.

See also: Science **357**, 67 (2017) Aslam *et al.* (Wrachtrup, Stuttgart) $[B_0 = 3 \text{ T}, f_e = 87 \text{ GHz}, T_{1n} = 260 \text{ s}]$

NMR spectroscopy

Data from Harvard: Nature 555, 351 (2018) Glenn et al.

See also: Science **357**, 67 (2017) Aslam *et al.* (Wrachtrup, Stuttgart) $[B_0 = 3 \text{ T}, f_e = 87 \text{ GHz}, T_{1n} = 260 \text{ s}]$

Toward single-molecular imaging

- Information of the positions of the individual nuclei
 - → Accurate measurement of e-n int. const's $(A_{\parallel}, A_{\perp}) \approx (r, \theta)$
 - ightarrow Lack of information on the azimuthal angle ϕ
- Spectral resolution
 - ightarrow Easy to resolve isotopes
 - \rightarrow Need to measure *J*-couplings & chemical shifts (ppm!)
 - \rightarrow Limited by sensor/memory lifetimes ($T_{2e/n}, T_{1e/n}$)

How to determine ϕ ?

Transition probability of the NV spin after the detection of a single nuclear spin

$$P_{\rm Y} = \frac{1}{2} - \frac{1}{2}\cos(\phi - \phi_{\rm n})\sin N\phi_{\rm cp}$$

Azimuthal angle of the nuclear Bloch vector: $2\pi f_{\rm p}t + \phi_{\rm n}(0)$

Ensemble vs. single

Determination of ϕ of a ¹³C *n*-spin

- 1. DNP (PulsePol)
- 2. RF pulse@ $m_s = -1$
- 3. Wait t (n-spin precesses)
- 4. AC sensing

PulsePol

Hamiltonian engineering

- DNP condition: $2\tau_{pol} = k/f_n$ (k: odd, f_n : nuclear Larmor frequency)
- Average Hamiltonian $\propto S_+I_- + S_-I_+, \propto S_+I_+ + S_-I_-$

[PulsePol] Sci. Adv. 4, eaat8978 (2018) Schwartz et al.

PulsePol

PulsePol

Determination of ϕ of a ¹³C *n*-spin

- 1. DNP (PulsePol)
- 2. RF pulse@ $m_s = -1$
- 3. Wait t (n-spin precesses)
- 4. AC sensing

Determination of ϕ of a ¹³C *n*-spin

- ✓ $t \rightarrow 1$ ms (undersampling)
- ✓ $f_p = 215.79 \text{ kHz} \approx f_1 = 215.6 \text{ kHz}$
- $\checkmark \phi \phi_{\rm n}(0) = 334.0^{\circ}$
- ✓ $\phi_n(0) = 89.2^\circ$ (Real-space *n*-spin trajectory)

$\phi_n(0)$: Real-space *n*-spin trajectory

Direction of the RF field

→ Bloch vector@t = 0 (Considering the rotation axis of the n-spin & detuning)

— Full simulation based on the Bloch equation (Tilt of q-axis, pulse delay...)

Determination of ϕ of a ¹³C *n*-spin

✓
$$t \rightarrow 1 \text{ ms}$$
 (undersampling)
✓ $f_p = 215.79 \text{ kHz} \approx f_1 = 215.6 \text{ kHz}$
✓ $\phi - \phi_n(0) = 334.0^\circ$
✓ $\phi_n(0) = 89.2^\circ$ (Real-space *n*-spin trajectory)

 $\rightarrow \phi$ = 247.8 ± 4.1°

Observation of weakly coupled ¹³C *n*-spins

Ultrahigh resolution sensing (N = 2)

Observation of weakly coupled ¹³C *n*-spins

Ultrahigh resolution sensing (N = 2)

Summary

- Tools for single-molecule imaging/structural analysis are being developed
 - \rightarrow Determination of the position of a single *n*-spin^[1,2]
 - \rightarrow Ultrahigh resolution sensing on single *n*-spins^[1,3,4]
- **Other issues:** Create high-quality "shallow" NVs, accurately position single molecules/proteins near the sensor etc

Phys. Rev. B 98, 121405 (2018) Sasaki, Itoh & Abe (arXiv.1806.00177)
 Phys. Rev. Lett. 121, 170801 (2018) Zopes *et al.* (arXiv.1807.04559)
 Nature Commun. 10, 594 (2019) Pfender *et al.* (arXiv.1806.02181)
 Nature 571, 230 (2019) Cujia *et al.* (arXiv.1806.08243)

ightarrow Suppressing back actions by weak measurement