Quantum Spintronics Design (focusing on NV centers in diamond)

Eisuke Abe

Spintronics Research Center, Keio University

2018.02.28

CMD Spintronics Design Course

@Osaka University

Keio University

Short CV

© Google Earth

- 2001.4 2006.3 (Keio U)
 - ESR and NMR in silicon
- 2006.4 2009.12 (ISSP, U Tokyo)
 - Quantum transport with nanostructures (GaAs QDs, Josephson)
- 2010.1 2011.6 (Oxford U)
 - ESR in silicon, spin-ensemble–cavity coupling
- 2011.7 2015.3 (Stanford U/RIKEN)
 - Quantum optics with self-assembled InAs QDs
- 2015.4 Present (Keio U)
 - Magnetometry with NV centers in diamond

Outline

• Basics of NV centers in diamond

- Structure
- Optical properties
- Spin properties

• AC magnetometry

- Basics
- Correlation spectroscopy and detection of nuclear spins
- Ultrahigh resolution sensing

Outline

• Basics of NV centers in diamond

- Structure
- Optical properties
- Spin properties
- AC magnetometry
 - Basics
 - Correlation spectroscopy and detection of nuclear spins
 - Ultrahigh resolution sensing

Diamond envy

Lucara Diamond

Diamond NV

©Lucara Diamond

1109 carats, \$70M

Diamond NV

2² x 0.5 mm³, \$700 (E6) [N] < 5 ppb, [NV] < 0.03 ppb

NV spin as a qubit/sensor

• Quantum information

- Quantum network
- Quantum computing
- Quantum sensing
 - B-field, E-field, T...
 - Nanoscale MRI
 - Probe for condensed matter physics
 - Biology, medicine

Quantum sensing

©Qnami

©Adamas

Living cell

- High spatial resolution
- Non-destructive, non-invasive, non-toxic
- Various modalities

Crystal & energy level structures

- Negatively-charged (NV⁻)
- 4 sp^3 orbitals, 6 e^- (5 from the defect, 1 captured)
- C_{3v} (symmetry axis = quantization axis)

Optical transitions

PL spectroscopy

V.B.

PL imaging

Photon statistics

Non-radiative path

Time-resolved fluorescence

CW ODMR

CW ODMR at $B_0 = 0$

CW ODMR at $B_0 \ge 0$

Ramsey interferometry

 $m_{\rm S} = 0 \leftrightarrow 1$, hf w/ ¹⁵N (3 MHz)

Coherence time

Stretched exponential decay

$$\exp\left[-\left(\frac{2\tau}{T_2}\right)^p\right]$$

CVD growth of shallow single NV centers

- Hydrogen-terminated
- ~5 nm from the surface
- [¹²C] = 99.999%

Experimental setup

cf. a case of QDs @Stanford

Outline

• Basics of NV centers in diamond

- Structure
- Optical properties
- Spin properties

• AC magnetometry

- Basics
- Correlation spectroscopy and detection of nuclear spins
- Ultrahigh resolution sensing

Quantum sensing

Nuclear spins precess at a few kHz–MHz under B₀

Weak AC magnetic fields on an NV spin (11 nT for d_{NV} = 5 nm)

Detect them using quantum coherence

- Spin echoes cancel the phase accumulation due to DC magnetic fields
- How about **AC magnetic fields**? → In many case, **YES**
- However, for specific AC frequencies, and the phase is accumulated constructively → AC magnetometry

Sign of phase accumulation

 If we have multiple oscillations between π-pulses, the sensor phase averages out

- π -pulses cancel the sensor phase except $f_{ac} \approx 1/2\tau$ (& odd-harmonics)
- To obtain a spectrum, sweep τ and repeat
- Resolution $\propto 1/T_2$

Sign of phase accumulation

- Even if $f_{ac} = 1/2\tau$, the accumulated phase φ depends on the **initial phase** α of the AC field
- In many cases, we do not know α

AC signal

 $B_{\rm ac}(t) = B_{\rm ac}\cos(2\pi f_{\rm ac}t + \alpha)$

Modulation function

$$h(t) = \begin{cases} 1 \\ -1 \end{cases} = \frac{4}{\pi} \sum_{n = \text{odd}} \frac{\cos(\pi t/\tau)}{n}$$

Accumulated phase

$$\varphi(t) = \gamma B_{ac} \int_{0}^{t} h(t) \cos(2\pi f_{ac}t + \alpha) dt = \gamma B_{ac}tW(f_{ac}, \alpha)$$

Meighting (filter) function

Present case: $t = 4\tau = t_s$, $f_{ac} = 1/2\tau$

$$\varphi = \frac{2\gamma B_{\rm ac} t_{\rm s}}{\pi} \cos \alpha \quad \Longrightarrow$$

Average over many possible α with the transition probability $p = \sin^2 \varphi$

$$W_{\rm CP}(f_{\rm ac},\alpha) = \frac{\sin(\pi f_{\rm ac}n\tau)}{\pi f_{\rm ac}n\tau} [1 - \sec(\pi f_{\rm ac}\tau)] \cos(\pi f_{\rm ac}n\tau + \alpha)$$

Figure: Rev. Mod. Phys. 89, 035002 (2017) Degen et al.

AC signal at 2 MHz applied from a coil, detected by a single NV center

AC signal at 2 MHz applied from a coil, detected by a single NV center

Nuclei in play

- Hydrogen (¹H)
 - Molecules on the diamond surface
 - $I = \frac{1}{2}, \gamma_n/2\pi = 42.577 \text{ kHz/mT}$
- Carbon (¹³C)
 - Plenty in diamond itself (1.1%)
 - $I = \frac{1}{2}, \gamma_n/2\pi = 10.705 \text{ kHz/mT}$
- Nitrogen (¹⁴N)
 - Contained in NV itself (99.6%)
 - / = 1, $\gamma_n/2\pi$ = 3.077 kHz/mT
- Nitrogen (¹⁵N)
 - Contained in NV itself (0.4%, often enriched)
 - $I = \frac{1}{2}, \gamma_n/2\pi = -4.316 \text{ kHz/mT}$

Nuclear spin sensing

- XY16 (*N* = 64)
- Increment: $\Delta \tau = 156 \text{ ns} \rightarrow f = 1/2\tau$
- $B_0 = 30 \text{ mT}, \gamma_n(^{13}\text{C})/2\pi = 10.705 \text{ kHz/mT}$
- Measurement time = 1 day

Correlation spectroscopy

Nature Commun. **4**, 1651 (2013) Laraoui *et al.* Phys. Rev. Appl. **4**, 024004 (2015) Kong *et al.* Nature Commun. **6**, 8527 (2015) Staudacher *et al.* Phys. Rev. Lett. **116**, 197601 (2016) Boss *et al.*

Correlation spectroscopy AC field at f_{ac} α_1 α_2 Sensor is in $|m_s = 0\rangle$, $|-1\rangle$ $(T_1 \text{ limited})$ $t_s = N\tau$ t_{corr} No gain of the phase if $t_{\rm corr} = (m+1/4)/f_{\rm ac}$

The transition probability for random phases

$$p(t_1) \approx \frac{1}{2} \left\{ 1 - \frac{1}{2} \left(\frac{\gamma B_{\rm ac} t_{\rm s}}{\pi} \right)^2 \cos(2\pi f_{\rm ac} t_{\rm corr}) \right\}$$

Nature Commun. 4, 1651 (2013) Laraoui et al. Phys. Rev. Appl. 4, 024004 (2015) Kong et al. Nature Commun. 6, 8527 (2015) Staudacher et al. Phys. Rev. Lett. 116, 197601 (2016) Boss et al.

Nuclear spin precession at f_n

Hamiltonian of NV-¹³C coupled system

 $H=f_{\rm n}I_z+|m_s=-1\rangle\langle 1|(a_{\parallel}I_z+a_{\perp}I_x)$

 \rightarrow | $m_s = 0$ does not feel hyperfine fields from ¹³C

Nature Commun. **4**, 1651 (2013) Laraoui *et al.* Phys. Rev. Appl. **4**, 024004 (2015) Kong *et al.* Nature Commun. **6**, 8527 (2015) Staudacher *et al.* Phys. Rev. Lett. **116**, 197601 (2016) Boss *et al.*

• XY8 (N = 8) • $\tau = 1.311 \,\mu s$ • $f = 1/2\tau = 381.3 \,\text{kHz}$

Nuclear spin sensing

- XY16 (*N* = 64)
- $B_0 = 29.9 \text{ mT}, \gamma_n(^1\text{H})/2\pi = 42.577 \text{ kHz/mT}$
- Measurement time = 30 min

Nuclear spin sensing

 $f_n(^{1}H) = 855.80 \text{ kHz} \leftrightarrow f_n(^{13}C) \times 4 = 860.68 \text{ kHz} (Spurious signal*)$

- XY16 (N = 32), $B_0 = 20.1 \text{ mT}$
- $d_{\rm NV} = 6.2$ nm (Proton ensemble in oil)
- $f_n({}^{1}H)/f_n({}^{13}C) = 42.577/10.705 = 3.98$

Nuclear spin sensing

- XY16 (N = 128), B₀ = 20.4 mT
- Measurement time = 0.5 day
- $d_{\rm NV} = 18$ nm (Proton ensemble in oil)

• "Seeing is NOT believing", "Appearances are deceiving"

- Careful analysis of the obtained spectra is necessary (especially when you look at a single nucleus)
- Moderate spectral resolution
 - Improved by correlation spectroscopy (T_{1e}) and/or using ¹⁵N nuclear spin $(T_{2n/1n})$ as a memory, but
 - T_2 becomes shorter for shallower NV centers
 - Resolution required for chemical analysis is on the order of Hz (ppm)

- "Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor"
 - Science **356**, 832 (2017) Schmitt *et al.* (Jelezko, Ulm)
 - \rightarrow Quantum heterodyne (Qdyne)
- "Quantum sensing with arbitrary frequency resolution"
 - Science **356**, 837 (2017) Boss *et al.* (Degen, ETH)
 - \rightarrow Continuous sampling
- "High Resolution Magnetic Resonance Spectroscopy Using Solid-State Spins"
 - arXiv:1705.08887 Bucher *et al.* (Walsworth, Harvard)
 - → Synchronized readout

Sensing sequence ($\tau \approx 1/2f_{ac} \& t_{L}$ -periodic)

$$\varphi_k = \frac{2\gamma B_{\rm ac} t_s}{\pi} \cos \alpha_k \qquad \qquad \alpha_{k+1} = 2\pi f_{\rm ac} t_L + \alpha_k$$

Science 356, 832 (2017) Schmitt et al. Science 356, 837 (2017) Boss et al. arXiv:1705.08887 Bucher et al.

$$\varphi_k = \frac{2\gamma B_{\rm ac} t_s}{\pi} \cos \alpha_k \qquad \qquad \alpha_{k+1} = 2\pi f_{\rm ac} t_L + \alpha_k$$

Science **356**, 832 (2017) Schmitt *et al.* Science **356**, 837 (2017) Boss *et al.* arXiv:1705.08887 Bucher *et al.*

Data obtained after many runs with time tagging

$$I \approx \sum_{n} \frac{B_{\rm ac} t_s}{\pi} \cos[2\pi (f_{\rm ac} - f_{\rm LO})nt_L + \phi_0]$$

FFT gives f_{ac} relative to f_{LO} (= e.g., $1/t_L$)

- The sensor works as a mixer for quantum & classical signals
 - → Quantum hetrodyne
- The whole measurement can be regarded as a single measurement
 - → Continuous sampling
- Readout outcomes are time-tagged
 - → Synchronized readout

Science **356**, 832 (2017) Schmitt *et al.* Science **356**, 837 (2017) Boss *et al.* arXiv:1705.08887 Bucher *et al.*

 B_{ac} = 96.5 nT & f_{ac} = 2.001 MHz applied from a coil, detected by a single NV center

- Spectral resolution not limited by sensor/memory lifetimes ($T_{2e/n}$, $T_{1e/n}$)
- Only limited by the stability of LO (essentially infinite)
- Resolution = T^{-1} & SNR $\propto T^{0.5} \rightarrow$ Precision $\propto T^{-1.5}$

(Data from Harvard: arXiv:1705.08887 Bucher et al.)

See also: Science **357**, 67 (2017) Aslam *et al.* (Wrachtrup, Stuttgart) $[B_0 = 3 \text{ T}, f_e = 87 \text{ GHz}, T_{1n} = 260 \text{ s}]$

Summary

NV centers in diamond

 The basic properties are well-understood, but there still remain many challenges in materials science such as how to create near-surface NV centers with high spin coherence, and how to control the direction of the NV axis out of possible four.

• AC magnetometry

 We have now basic tools to achieve high AC magnetic field sensitivities and resolutions in the laboratory, and are moving toward the goal of bringing these technologies into real and practical applications (but of course, we anticipate many scientific surprises along the way).

> *Tutorial article* to appear in *J. Appl. Phys.* arXiv.1802.07857 Abe *et al.*